# Copyright The Royal Society of Chemistry, 1999 # CCDC Number: 440/099 data_inaba2 # Refinement in Aba2, reported in text. _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety [W(CO)4(C2H4)2] _chemical_formula_sum 'C8 H8 O4 W' _chemical_formula_weight 351.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'W' 'W' -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Aba2 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, z' '-x+1/2, y+1/2, z' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' 'x+1/2, -y+1, z+1/2' '-x+1/2, y+1, z+1/2' _cell_length_a 12.458(3) _cell_length_b 6.370(2) _cell_length_c 12.557(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 996.5(5) _cell_formula_units_Z 4 _cell_measurement_temperature 200(2) _cell_measurement_reflns_used 72 _cell_measurement_theta_min 15 _cell_measurement_theta_max 16 _exptl_crystal_description block _exptl_crystal_colour Colourless _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.19 _exptl_crystal_size_min 0.12 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.346 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 648 _exptl_absorpt_coefficient_mu 11.571 _exptl_absorpt_correction_type Numerical _exptl_absorpt_correction_T_min 0.1321 _exptl_absorpt_correction_T_max 0.2830 _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method Omega-theta _diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count ? _diffrn_standards_interval_time 60 _diffrn_standards_decay_% 0 _diffrn_reflns_number 3058 _diffrn_reflns_av_R_equivalents 0.0556 _diffrn_reflns_av_sigmaI/netI 0.0349 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 0 _diffrn_reflns_limit_k_min -7 _diffrn_reflns_limit_k_max 7 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 3.24 _diffrn_reflns_theta_max 25.04 _reflns_number_total 884 _reflns_number_gt 635 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement SHELXL-97 _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0241P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary 'By inspection' _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens 'difference map' _refine_ls_hydrogen_treatment 'restrained refall' _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00094(14) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.54(6) _refine_ls_number_reflns 884 _refine_ls_number_parameters 75 _refine_ls_number_restraints 23 _refine_ls_R_factor_all 0.0374 _refine_ls_R_factor_gt 0.0221 _refine_ls_wR_factor_ref 0.0506 _refine_ls_wR_factor_gt 0.0463 _refine_ls_goodness_of_fit_ref 1.107 _refine_ls_restrained_S_all 1.094 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group W1 W 0.0000 0.0000 -0.0022(5) 0.02438(16) Uani 1 d SD . . O1 O 0.1260(7) 0.2567(15) 0.1769(7) 0.049(2) Uani 1 d DU . . C1 C 0.0787(12) 0.158(2) 0.1160(8) 0.031(3) Uani 1 d DU . . O2 O -0.0968(7) -0.2956(15) -0.1816(6) 0.053(2) Uani 1 d DU . . C2 C -0.0643(10) -0.193(2) -0.1144(10) 0.036(3) Uani 1 d DU . . C3 C -0.1151(8) 0.2747(14) 0.0371(7) 0.033(2) Uani 1 d D . . H31 H -0.087(6) 0.414(9) 0.020(5) 0.041(15) Uiso 1 d D . . H32 H -0.133(8) 0.296(12) 0.112(4) 0.041(15) Uiso 1 d D . . C4 C -0.1634(7) 0.1482(15) -0.0420(7) 0.031(2) Uani 1 d D . . H41 H -0.172(6) 0.162(12) -0.119(4) 0.041(15) Uiso 1 d D . . H42 H -0.222(5) 0.050(10) -0.028(4) 0.041(15) Uiso 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 W1 0.0238(2) 0.0225(2) 0.0268(2) 0.000 0.000 -0.0008(3) O1 0.047(5) 0.059(5) 0.040(4) -0.017(4) -0.004(4) -0.014(4) C1 0.041(5) 0.024(5) 0.029(4) 0.006(4) -0.004(4) 0.008(5) O2 0.050(5) 0.060(5) 0.049(4) -0.018(4) 0.002(4) -0.018(5) C2 0.036(6) 0.036(6) 0.036(5) -0.001(5) -0.001(5) 0.007(5) C3 0.034(5) 0.017(5) 0.049(5) 0.004(4) -0.002(4) 0.015(4) C4 0.026(4) 0.018(5) 0.047(5) 0.004(4) 0.000(4) 0.000(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W1 C2 2.033(10) . ? W1 C2 2.033(10) 2 ? W1 C1 2.045(9) . ? W1 C1 2.045(9) 2 ? W1 C4 2.299(9) . ? W1 C4 2.299(9) 2 ? W1 C3 2.315(9) . ? W1 C3 2.315(9) 2 ? O1 C1 1.151(11) . ? O2 C2 1.142(10) . ? C3 C4 1.413(13) . ? C3 H31 0.98(4) . ? C3 H32 0.98(4) . ? C4 H41 0.98(4) . ? C4 H42 0.98(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 W1 C2 92.3(9) . 2 ? C2 W1 C1 171.8(7) . . ? C2 W1 C1 90.9(3) 2 . ? C2 W1 C1 90.9(3) . 2 ? C2 W1 C1 171.8(7) 2 2 ? C1 W1 C1 87.0(9) . 2 ? C2 W1 C4 75.4(5) . . ? C2 W1 C4 87.1(5) 2 . ? C1 W1 C4 112.3(5) . . ? C1 W1 C4 86.3(5) 2 . ? C2 W1 C4 87.1(5) . 2 ? C2 W1 C4 75.4(5) 2 2 ? C1 W1 C4 86.3(5) . 2 ? C1 W1 C4 112.3(5) 2 2 ? C4 W1 C4 154.9(5) . 2 ? C2 W1 C3 111.1(4) . . ? C2 W1 C3 86.3(4) 2 . ? C1 W1 C3 76.7(5) . . ? C1 W1 C3 85.5(5) 2 . ? C4 W1 C3 35.7(3) . . ? C4 W1 C3 154.8(3) 2 . ? C2 W1 C3 86.3(4) . 2 ? C2 W1 C3 111.1(4) 2 2 ? C1 W1 C3 85.5(5) . 2 ? C1 W1 C3 76.7(5) 2 2 ? C4 W1 C3 154.8(3) . 2 ? C4 W1 C3 35.7(3) 2 2 ? C3 W1 C3 155.4(5) . 2 ? O1 C1 W1 175.1(13) . . ? O2 C2 W1 176.2(14) . . ? C4 C3 W1 71.5(5) . . ? C4 C3 H31 121(4) . . ? W1 C3 H31 115(5) . . ? C4 C3 H32 131(4) . . ? W1 C3 H32 117(6) . . ? H31 C3 H32 99(5) . . ? C3 C4 W1 72.8(5) . . ? C3 C4 H41 134(4) . . ? W1 C4 H41 110(5) . . ? C3 C4 H42 124(4) . . ? W1 C4 H42 111(5) . . ? H41 C4 H42 99(5) . . ? _diffrn_measured_fraction_theta_max 0.501 _diffrn_reflns_theta_full 25.04 _diffrn_measured_fraction_theta_full 0.501 _refine_diff_density_max 0.801 _refine_diff_density_min -1.270 _refine_diff_density_rms 0.158 data_incmca # Refinement in Cmca _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety ? _chemical_formula_sum 'C8 H8 O4 W' _chemical_formula_weight 351.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'W' 'W' -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Cmca loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x, -y, -z' 'x+1/2, y+1/2, z' '-x+1/2, -y+1, z+1/2' '-x+1/2, y+1, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x, y-1/2, -z-1/2' 'x, -y-1/2, z-1/2' '-x, y, z' '-x+1/2, -y+1/2, -z' 'x+1/2, y, -z-1/2' 'x+1/2, -y, z-1/2' '-x+1/2, y+1/2, z' _cell_length_a 12.557(3) _cell_length_b 6.3700(13) _cell_length_c 12.458(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 996.5(3) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max ? _exptl_crystal_size_mid ? _exptl_crystal_size_min ? _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.346 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 648 _exptl_absorpt_coefficient_mu 11.571 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3050 _diffrn_reflns_av_R_equivalents 0.0618 _diffrn_reflns_av_sigmaI/netI 0.0287 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -7 _diffrn_reflns_limit_k_max 7 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 0 _diffrn_reflns_theta_min 3.24 _diffrn_reflns_theta_max 25.04 _reflns_number_total 465 _reflns_number_gt 347 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+16.4151P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00108(15) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 465 _refine_ls_number_parameters 42 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0394 _refine_ls_R_factor_gt 0.0267 _refine_ls_wR_factor_ref 0.0597 _refine_ls_wR_factor_gt 0.0559 _refine_ls_goodness_of_fit_ref 1.254 _refine_ls_restrained_S_all 1.254 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group W1 W 0.0000 0.0000 0.0000 0.0249(3) Uani 1 d S . . O1 O 0.1795(5) -0.2755(13) -0.1110(6) 0.065(2) Uani 1 d . . . C1 C 0.1154(6) -0.1756(16) -0.0712(7) 0.038(2) Uani 1 d . . . C2 C -0.0421(13) 0.279(3) -0.1155(14) 0.041(4) Uani 0.50 d P . . H2A H -0.1117 0.2745 -0.1494 0.049 Uiso 0.50 d PR . . H2C H -0.0210 0.4181 -0.0925 0.049 Uiso 0.50 d PR . . C3 C 0.0403(13) 0.148(3) -0.1630(12) 0.033(4) Uani 0.50 d P . . H3C H 0.1103 0.2113 -0.1692 0.039 Uiso 0.50 d PR . . H3A H 0.0199 0.0681 -0.2260 0.039 Uiso 0.50 d PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 W1 0.0274(3) 0.0229(4) 0.0243(3) -0.0012(4) 0.000 0.000 O1 0.043(3) 0.067(6) 0.083(5) -0.042(5) -0.004(4) 0.016(4) C1 0.031(4) 0.043(5) 0.040(4) -0.009(5) 0.000(4) -0.004(4) C2 0.060(10) 0.026(10) 0.036(9) 0.021(9) -0.007(8) -0.006(8) C3 0.048(9) 0.019(9) 0.031(8) -0.001(7) 0.006(7) -0.007(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W1 C1 2.034(9) 12 ? W1 C1 2.034(9) 9 ? W1 C1 2.034(9) 4 ? W1 C1 2.034(9) . ? W1 C3 2.296(15) 12 ? W1 C3 2.296(15) . ? W1 C3 2.296(15) 4 ? W1 C3 2.296(15) 9 ? W1 C2 2.346(16) 12 ? W1 C2 2.346(16) . ? W1 C2 2.346(16) 4 ? W1 C2 2.346(16) 9 ? O1 C1 1.140(10) . ? C2 C3 1.02(2) 12 ? C2 C2 1.06(3) 12 ? C2 C3 1.45(2) . ? C3 C3 1.01(3) 12 ? C3 C2 1.02(2) 12 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 W1 C1 89.1(5) 12 9 ? C1 W1 C1 180.0 12 4 ? C1 W1 C1 90.9(5) 9 4 ? C1 W1 C1 90.9(5) 12 . ? C1 W1 C1 180.0 9 . ? C1 W1 C1 89.1(5) 4 . ? C1 W1 C3 71.5(5) 12 12 ? C1 W1 C3 90.1(5) 9 12 ? C1 W1 C3 108.5(5) 4 12 ? C1 W1 C3 89.9(5) . 12 ? C1 W1 C3 89.9(5) 12 . ? C1 W1 C3 108.5(5) 9 . ? C1 W1 C3 90.1(5) 4 . ? C1 W1 C3 71.5(5) . . ? C3 W1 C3 25.5(8) 12 . ? C1 W1 C3 108.5(5) 12 4 ? C1 W1 C3 89.9(5) 9 4 ? C1 W1 C3 71.5(5) 4 4 ? C1 W1 C3 90.1(5) . 4 ? C3 W1 C3 180.0 12 4 ? C3 W1 C3 154.5(8) . 4 ? C1 W1 C3 90.1(5) 12 9 ? C1 W1 C3 71.5(5) 9 9 ? C1 W1 C3 89.9(5) 4 9 ? C1 W1 C3 108.5(5) . 9 ? C3 W1 C3 154.5(8) 12 9 ? C3 W1 C3 180.0 . 9 ? C3 W1 C3 25.5(8) 4 9 ? C1 W1 C2 108.0(5) 12 12 ? C1 W1 C2 90.7(5) 9 12 ? C1 W1 C2 72.0(5) 4 12 ? C1 W1 C2 89.3(5) . 12 ? C3 W1 C2 36.5(5) 12 12 ? C3 W1 C2 25.4(5) . 12 ? C3 W1 C2 143.5(5) 4 12 ? C3 W1 C2 154.6(5) 9 12 ? C1 W1 C2 89.3(5) 12 . ? C1 W1 C2 72.0(5) 9 . ? C1 W1 C2 90.7(5) 4 . ? C1 W1 C2 108.0(5) . . ? C3 W1 C2 25.4(5) 12 . ? C3 W1 C2 36.5(5) . . ? C3 W1 C2 154.6(5) 4 . ? C3 W1 C2 143.5(5) 9 . ? C2 W1 C2 26.1(8) 12 . ? C1 W1 C2 72.0(5) 12 4 ? C1 W1 C2 89.3(5) 9 4 ? C1 W1 C2 108.0(5) 4 4 ? C1 W1 C2 90.7(5) . 4 ? C3 W1 C2 143.5(5) 12 4 ? C3 W1 C2 154.6(5) . 4 ? C3 W1 C2 36.5(5) 4 4 ? C3 W1 C2 25.4(5) 9 4 ? C2 W1 C2 180.0 12 4 ? C2 W1 C2 153.9(8) . 4 ? C1 W1 C2 90.7(5) 12 9 ? C1 W1 C2 108.0(5) 9 9 ? C1 W1 C2 89.3(5) 4 9 ? C1 W1 C2 72.0(5) . 9 ? C3 W1 C2 154.6(5) 12 9 ? C3 W1 C2 143.5(5) . 9 ? C3 W1 C2 25.4(5) 4 9 ? C3 W1 C2 36.5(5) 9 9 ? C2 W1 C2 153.9(8) 12 9 ? C2 W1 C2 180.0 . 9 ? C2 W1 C2 26.1(8) 4 9 ? O1 C1 W1 179.4(8) . . ? C3 C2 C2 88.7(15) 12 12 ? C3 C2 C3 44.1(17) 12 . ? C2 C2 C3 44.6(8) 12 . ? C3 C2 W1 74.5(12) 12 . ? C2 C2 W1 77.0(4) 12 . ? C3 C2 W1 69.9(8) . . ? C3 C3 C2 91.3(15) 12 12 ? C3 C3 C2 44.6(8) 12 . ? C2 C3 C2 46.7(17) 12 . ? C3 C3 W1 77.3(4) 12 . ? C2 C3 W1 80.1(12) 12 . ? C2 C3 W1 73.7(8) . . ? _diffrn_measured_fraction_theta_max 0.440 _diffrn_reflns_theta_full 25.04 _diffrn_measured_fraction_theta_full 0.440 _refine_diff_density_max 0.892 _refine_diff_density_min -1.099 _refine_diff_density_rms 0.161 data_wco4ch # twinned refinement. _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety ? _chemical_formula_sum 'C6 H4 O4 W' _chemical_formula_weight 323.94 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'W' 'W' -0.8490 6.8722 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P21/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 7.0387(15) _cell_length_b 12.447(3) _cell_length_c 6.376(3) _cell_angle_alpha 90.00 _cell_angle_beta 116.938(18) _cell_angle_gamma 90.00 _cell_volume 498.0(3) _cell_formula_units_Z 2 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max ? _exptl_crystal_size_mid ? _exptl_crystal_size_min ? _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 2.160 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 292 _exptl_absorpt_coefficient_mu 11.567 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3382 _diffrn_reflns_av_R_equivalents 0.0488 _diffrn_reflns_av_sigmaI/netI 0.0326 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 0 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 3.25 _diffrn_reflns_theta_max 25.05 _reflns_number_total 878 _reflns_number_gt 596 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0282P)^2^+3.0636P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0044(9) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_number_reflns 878 _refine_ls_number_parameters 63 _refine_ls_number_restraints 37 _refine_ls_R_factor_all 0.0496 _refine_ls_R_factor_gt 0.0301 _refine_ls_wR_factor_ref 0.0733 _refine_ls_wR_factor_gt 0.0657 _refine_ls_goodness_of_fit_ref 1.154 _refine_ls_restrained_S_all 1.134 _refine_ls_shift/su_max 0.078 _refine_ls_shift/su_mean 0.022 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group W1 W 0.0000 0.0000 0.0000 0.0255(3) Uani 1 d SDU . . C1 C 0.240(2) 0.0656(16) 0.300(3) 0.035(4) Uani 1 d DU . . O1 O 0.361(2) 0.1135(12) 0.456(3) 0.064(5) Uani 1 d DU . . C2 C -0.221(2) 0.0773(15) 0.060(4) 0.037(4) Uani 1 d DU . . O2 O -0.3565(19) 0.1086(13) 0.099(3) 0.071(5) Uani 1 d DU . . C3 C -0.079(2) -0.1174(11) 0.233(3) 0.045(3) Uani 1 d DU . . H3A H -0.0375 -0.0947 0.3937 0.054 Uiso 1 calc R . . H3B H -0.2178 -0.1518 0.1592 0.054 Uiso 1 calc R . . C4 C 0.081(2) -0.1631(9) 0.188(2) 0.039(3) Uani 1 d DU . . H4A H 0.0411 -0.2261 0.0879 0.047 Uiso 1 calc R . . H4B H 0.2210 -0.1691 0.3220 0.047 Uiso 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 W1 0.0281(3) 0.0243(3) 0.0312(9) -0.0002(4) 0.0196(9) 0.0015(5) C1 0.029(5) 0.037(8) 0.036(9) 0.007(7) 0.013(6) 0.008(6) O1 0.056(9) 0.061(9) 0.048(9) -0.018(8) -0.001(7) 0.015(8) C2 0.025(5) 0.037(8) 0.044(13) -0.017(8) 0.011(7) 0.000(6) O2 0.030(7) 0.102(11) 0.074(13) -0.053(11) 0.016(8) 0.007(8) C3 0.064(8) 0.049(7) 0.026(7) 0.016(6) 0.025(6) 0.001(6) C4 0.065(8) 0.033(5) 0.014(6) 0.002(5) 0.013(6) 0.010(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag W1 C2 2.005(14) . ? W1 C2 2.005(14) 3 ? W1 C1 2.062(17) . ? W1 C1 2.062(17) 3 ? W1 C4 2.295(11) 3 ? W1 C4 2.295(11) . ? W1 C3 2.326(12) 3 ? W1 C3 2.326(12) . ? C1 O1 1.141(14) . ? C2 O2 1.160(13) . ? C3 C4 1.405(18) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 W1 C2 180.0 . 3 ? C2 W1 C1 90.9(5) . . ? C2 W1 C1 89.1(5) 3 . ? C2 W1 C1 89.1(5) . 3 ? C2 W1 C1 90.9(5) 3 3 ? C1 W1 C1 180.000(1) . 3 ? C2 W1 C4 69.1(7) . 3 ? C2 W1 C4 110.9(7) 3 3 ? C1 W1 C4 92.3(6) . 3 ? C1 W1 C4 87.7(6) 3 3 ? C2 W1 C4 110.9(7) . . ? C2 W1 C4 69.1(7) 3 . ? C1 W1 C4 87.7(6) . . ? C1 W1 C4 92.3(6) 3 . ? C4 W1 C4 180.0 3 . ? C2 W1 C3 104.5(7) . 3 ? C2 W1 C3 75.5(7) 3 3 ? C1 W1 C3 90.6(6) . 3 ? C1 W1 C3 89.4(6) 3 3 ? C4 W1 C3 35.4(4) 3 3 ? C4 W1 C3 144.6(4) . 3 ? C2 W1 C3 75.5(7) . . ? C2 W1 C3 104.5(7) 3 . ? C1 W1 C3 89.4(6) . . ? C1 W1 C3 90.6(6) 3 . ? C4 W1 C3 144.6(4) 3 . ? C4 W1 C3 35.4(4) . . ? C3 W1 C3 180.0 3 . ? O1 C1 W1 171.6(17) . . ? O2 C2 W1 170.9(19) . . ? C4 C3 W1 71.1(6) . . ? C3 C4 W1 73.5(6) . . ? _diffrn_measured_fraction_theta_max 0.945 _diffrn_reflns_theta_full 25.05 _diffrn_measured_fraction_theta_full 0.945 _refine_diff_density_max 1.027 _refine_diff_density_min -1.799 _refine_diff_density_rms 0.181