Supplementary Information for

R-Group Reversal of Isomer Stability for $RuH(X)L_2(CCHR)$ vs $Ru(X)L_2(CCH_2R)$: Access to Four-Coordinate Ruthenium Carbenes and Carbynes

Joseph N. Coalter, III, John C. Bollinger, Odile Eisenstein and Kenneth G. Caulton.

Supplementary Information:

General Considerations. All manipulations were performed using standard Schlenk techniques or in an argon filled glovebox unless otherwise noted. Solvents were distilled from Mg, Na, Na/benzophenone, P_2O_5 , or CaH₂, degassed prior to use, and stored over 4Å molecular sieves in air-tight vessels. Anhydrous NMe₄F, NaO^tBu, and NaOPh were used as received from commercial vendors. NaOAd 0.5 THF was prepared from HOAd and NaH (THF content determined by ¹H NMR). RuHClL₂(=C=CH₂) and RuHClL₂(=C=CHPh); (L = PⁱPr₃, ¹PCy₃²), $RuCb(P^{i}Pr_{3})_{2}(=CHMe)^{3}$, and $RuCbL_{2}(=CHPh)$; $(L = P^{i}Pr_{3}, PCy_{3})^{4,5}$ were prepared using published procedures. $RuCbL_2(=CH(CH_2Ph))^3$ was prepared by metathesis of RuCbL₂(=CHPh); (L = $P^{i}Pr_{3}$) with excess allylbenzene in CH₂Cb followed by crystallization from CH₂Cl₂/acetone.⁶ ¹H NMR chemical shifts are reported in ppm relative to protio impurities in the deutero solvents. ³¹P and ¹⁹F NMR spectra are referenced to external standards of 85% H₃PO₄ (0 ppm) or neat CF₃CO₂H (-78.5 ppm), respectively. NMR spectra were recorded with either a Varian Gemini 2000 (300 MHz ¹H; 121 MHz ³¹P; 75 MHz ¹³C, 282 MHz ¹⁹F), a Varian Unity INOVA instrument (400 MHz 1 H; 162 MHz 31 P; 101 MHz 13 C, 376 MHz 19 F), or a Varian Unity INOVA instrument (500 MHz¹H, 126 MHz¹³C). The following abbreviations are used: s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, t = triplet, td = triplet of doublets, q = quartet, vt = virtual triplet, dvt = doublet of virtual triplets, m = multiplet, br = rultipletbroad, ap = apparent.

$RuH(OPh)(P^iPr_3)_2(=C=CH_2).$

Method 1: Under argon, 15.0 mg (0.031 mmol) RuHCl(PⁱPr₃)₂(=C=CH₂) and 3.6 mg (0.031 mmol) NaOPh were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 1 hr of agitation showed >95 % conversion to the title compound. *Method 2:* Under argon, 15.0 mg (0.029 mmol) RuCl₂(PⁱPr₃)₂(=CHMe) and 6.7 mg (0.058 mmol) NaOPh were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 1 hr of agitation showed full conversion to the title compound and equimolar free phenol. ¹H NMR (300 MHz, THF-d₈, 20 °C): δ -15.71 (t, ³J_{P-H} = 19 Hz, 1H, RuH), δ 1.25 (dvt, J_{P-H} = ³J_{H-H} = 7 Hz, 18H, P(CHMe₂)₃), δ 1.29 (dvt, J_{P-H} = ³J_{H-H} = 7 Hz, 18H, P(CHMe₂)₃), δ 2.42 (m, 6H, P(CHMe₂)₃), δ 2.54 (br t, 2H, RuCCH₂), δ 6.36 (m, 3H, *o*,*p*-C₆H₅), δ 6.92 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅). ³¹P{¹H}</sup> NMR (121 MHz, THF-d₈, 20 °C): δ 50.6 (s).

$RuH(OPh)(P^iPr_3)_2(=C=CHPh).$

Method 1: Under argon, 15.0 mg (0.027 mmol) RuHCl(PⁱPr₃)₂(=C=CHPh) and 3.1 mg (0.027 mmol) NaOPh were combined in 0.5 mL C₆D₆ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 1 hr of agitation showed quantitative conversion to the title compound. *Method 2:* Under argon, 15.0 mg (0.025 mmol) RuCl₂(PⁱPr₃)₂(=CH(CH₂Ph)) and 5.8 mg (0.050 mmol) NaOPh were combined in 0.5 mL C₆D₆ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 12 hrs of agitation showed >90 % conversion to the title compound and equimolar free phenol. ¹H NMR (300 MHz, C₆D₆, 20 °C): δ -13.59 (t, ³J_{P-H} = 20 Hz, 1H, RuH), δ 1.13 (dvt, J_{P-H} = ³J_{H-H} = 7 Hz, 18H, P(CHMe₂)₃), δ 1.15 (dvt, J_{P-H} = ³J_{H-H} = 7 Hz, 18H, P(CHMe₂)₃), δ 2.15 (m, 6H, P(CHMe₂)₃), δ 4.38 (t, ⁴J_{P-H} = 3 Hz,

1H, RuCC*H*Ph), δ 6.75 (ap t, ³J_{H-H} = 7 Hz, 2H, C₆H₅), δ 6.88 (t, ³J_{H-H} = 7 Hz, 1H, C₆H₅), δ 7.20 (m, 7H, C₆H₅). ³¹P{¹H} NMR (121 MHz, C₆D₆, 20 °C): δ 51.0 (s).

$[RuCl(H)(F)(P^{i}Pr_{3})_{2}(=C=CHPh)]NMe_{4}.$

Under argon, 15.0 mg (0.027 mmol) RuHCl(PⁱPr₃)₂(=C=CHPh) and 15.0 mg (0.16 mmol) anhydrous NMe₄F were stirred in 0.5 mL C₆D₆ for 30 minutes and then quickly filtered through Celite into an NMR tube equipped with a Teflon seal. NMR spectra taken immediately showed 40% of the title compound and the balance of material as final product, RuH(F)(PⁱPr₃)₂(=C=CHPh). ¹H NMR (400 MHz, C₆D₆, 20 °C): δ -10.12 (dt, ²J_{F-H} = 80 Hz, ³J_{P-H} = 23 Hz, 1H, RuH), δ 1.43 (br dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 18H, P(CHMe₂)₃), δ 1.52 (br dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 18H, P(CHMe₂)₃), δ 4.17 (br s, 1H, RuCCHPh), δ 6.91 (t, ³J_{H-H} = 8 Hz, 1H, *p*-C₆H₅), δ 7.17 (ap t, ³J_{H-H} = 8 Hz, 2H, *m*-C₆H₅), δ 7.44 (d, ³J_{H-H} = 8 Hz, 2H, *o*-C₆H₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 49.7 (br s; ²J_{P-F} unresolved). ¹⁹F NMR (376 MHz, C₆D₆, 20 °C): δ -252.2 (br d, J_{F-H} = 80 Hz).

$RuH(F)(P^iPr_3)_2(=C=CHPh).$

After the NMR tube for the observation of $[RuCl(H)(F)(P^{i}Pr_{3})_{2}(=C=CHPh)]NMe_{4}$ above was allowed to stand for 12 hours, a minute amount of precipitate formed and NMR taken at this time showed only the title compound. ¹H NMR (400 MHz, C₆D₆, 20 °C): δ -14.49 (ap q, ³J_{P-H} \cong ²J_{F-H} = 18 Hz, 1H, Ru*H*), δ 1.21 (dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 18H, P(CHMe_{2})_{3}), δ 1.23 (dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 18H, P(CHMe_{2})_{3}), δ 1.23 (dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 18H, P(CHMe_{2})_{3}), δ 2.32 (m, 6H, P(CHMe_{2})_{3}), δ 4.32 (br s, 1H, RuCCHPh), δ 6.87 (t, ³J_{H-H} = 8 Hz, 1H, C₆H₅), δ 7.21 (m, 4H, C₆H₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 52.0 (d, ²J_{F-P} = 18 Hz). ¹⁹F NMR (376 MHz, C₆D₆, 20 °C): δ -154.9 (br s).

$RuH(OPh)(PCy_3)_2(=C=CH_2).$

Under argon, 15.0 mg (0.021 mmol) RuHCl(PCy₃)₂(=C=CH₂) and 2.4 mg (0.021 mmol) NaOPh were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 1 hr of agitation showed >95 % conversion to the title compound. ¹H NMR (400 MHz, THF-d₈, 20°C): δ -16.96 (t, ³J_{P-H} = 18 Hz, 1H, Ru*H*), δ 1.21, 1.55, 1.65, 1.74, 1.96, 2.22 (m, 66H, P(C₆*H*₁₁)₃), δ 2.41 (t, ⁴J_{P-H} = 4 Hz, 2H, RuCC*H*₂), δ 6.38 (m, 3H, *o*,*p*-C₆*H*₅), δ 6.95 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆*H*₅). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20°C): δ 42.3 (s).

$RuH(OPh)(PCy_3)_2(=C=CHPh).$

Under argon, 75.0 mg (0.094 mmol) RuHCl(PCy₃)₂(=C=CHPh) and 10.9 mg (0.094 mmol) NaOPh were stirred overnight in 10 mL toluene and the solution was filtered through Celite. After removal of the volatiles to a liquid N₂ trap, the green solid was washed with pentane (1x10 mL) and dried *in vacuo*. Isolated yield 55 mg (68 %). ¹H NMR (400 MHz, C₆D₆, 20 °C): δ -13.76 (t, ³J_{P-H} = 18 Hz, 1H, RuH), δ 1.16, 1.60, 1.70, 2.05, 2.17 (m, 66H, P(C₆H₁₁)₃), δ 4.47 (t, ⁴J_{P-H} = 2 Hz, 1H, RuCCHPh), δ 6.78 (ap t, ³J_{H-H} = 8 Hz, 2H, C₆H₅), δ 6.90 (t, ³J_{H-H} = 8 Hz, 1H, C₆H₅), δ 7.24 (m, 5H, C₆H₅), δ 7.36 (ap t, ³J_{H-H} = 8 Hz, 2H, C₆H₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 42.6 (s).

$Ru(OPh)(P^iPr_3)_2(CCH_3).$

Method 1: Under argon, 15.0 mg (0.031 mmol) RuHCl($P^{i}Pr_{3}$)₂(=C=CH₂) and 3.6 mg (0.031 mmol) NaOPh were combined in 0.5 mL C₆D₆ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 1 hour of agitation showed >90% conversion to the title compound. *Method 2:* Under argon, 15.0 mg (0.029 mmol) RuCb($P^{i}Pr_{3}$)₂(=CHMe) and 6.7 mg (0.058 mmol) NaOPh were combined in 0.5 mL C₆D₆ and added to an NMR tube equipped with a Teflon seal. NMR spectra taken after 12 hrs of agitation showed >90% conversion to the title compound and equimolar free phenol. ¹H NMR (400 MHz, C₆D₆, 20 °C): δ -0.26 (t, ⁴J_{P-H} = 3 Hz, 3H, RuCCH₃), δ 1.34 (dvt, J_{P-H} = ³J_{H-H} = 8 Hz, 36H, P(CHMe₂)₃), δ 2.09 (m, 6H, P(CHMe₂)₃), δ 6.49 (d, ³J_{H-H} = 8 Hz, 2H, *o*-C₆H₅), δ 6.62 (t, ³J_{H-H} = 6 Hz, 1H, *p*-C₆H₅), δ 7.20 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 56.0 (s).

Ru(OPh)(PCy₃)₂(CCH₃).

Under argon, 250 mg (0.345 mmol) RuHCl(PCy₃)₂(=C=CH₂) and 40.1 mg (0.345 mmol) NaOPh were stirred in 30 mL toluene for 4 hours at room temperature. The solution was filtered and reduced to dryness *in vacuo*. The solid was then washed with *cold* pentane (2 x 10 mL) and dried *in vacuo* to yield a brown powder. Isolated yield: 195 mg (72 %). ¹H NMR (400 MHz, C₆D₆, 20°C): δ -0.04 (t, ⁴J_{P-H} = 4 Hz, 3H, RuCCH₃), δ 1.20, 1.64, 1.81, 2.06, 2.36 (m, 66H, P(C₆H₁₁)₃), δ 6.55 (d, ³J_{H-H} = 8 Hz, 2H, *o*-C₆H₅), δ 6.65 (t, ³J_{H-H} = 6 Hz, 1H, *p*-C₆H₅), δ 7.24 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅). ³¹P{¹H} NMR (162 MHz, C₆D₆, 20 °C): δ 45.0 (s). ¹³C{¹H} NMR (101 MHz, C₆D₆, 20 °C): δ 27.2 (s, P(C₆H₁₁)₃), δ 28.1 (s, RuCCH₃), δ 28.3 (vt, J_{P-C} = 5 Hz, P(C₆H₁₁)₃), δ 31.1 (s, P(C₆H₁₁)₃), δ 35.3 (vt, J_{P-C} = 8 Hz, P(C₆H₁₁)₃), δ 113.3 (s, C₆H₅), δ 120.9 (s, C₆H₅), δ 167.3 (s, C₆H₅), δ 260.5 (t, J_{P-C} = 21 Hz, RuCCH₃).

$Ru(OPh)(P^{i}Pr_{3})_{2}(CPh).$

Under argon, 250 mg (0.429 mmol) RuCl₂(PⁱPr₃)₂(=CHPh) and 99.6 mg (0.858 mmol) NaOPh were stirred in 25 mL THF for 4 hours at room temperature. The volatiles were removed to a liquid N₂ trap and the green residue was dried overnight *in vacuo* to remove HOPh. After extracting with pentane (2 x 20 mL) filtering, and concentrating the combined extracts to ~5-10 mL, a green solid precipitated upon cooling to $-40 \,^{\circ}$ C for two days. The solid was collected, washed with cold pentane (10 mL) and dried *in vacuo*. Isolated yield: 150 mg (53 %). ¹H NMR (300 MHz, C₆D₆, 20°C): δ 1.35 (dvt, J_{P-H} = ³J_{H-H} = 7 Hz, 36H, P(CHMe₂)₃), δ 2.10 (m, 6H, P(CHMe₂)₃), δ 6.52 (d, ³J_{H-H} = 6 Hz, 2H, *o*-C₆H₅), δ 6.65 (t, ³J_{H-H} = 6 Hz, 1H, *p*-C₆H₅), δ 6.73 (ap t, ³J_{H-H} = 6 Hz, 2H, *m*-C₆H₅), δ 6.92 (t, ³J_{H-H} = 6 Hz, 1H, *p*-C₆H₅), δ 7.23 (ap t, ³J_{H-H} = 6 Hz, 2H, *m*-C₆H₅), δ 7.61 (d, ³J_{H-H} = 6 Hz, 2H, *o*-C₆H₅). ³¹P{¹H} NMR (121 MHz, C₆D₆, 20°C): δ 54.8 (s). ¹³C{¹H} NMR (101 MHz, C₆D₆, 20°C): δ 20.8 (s, P(CHMe₂)₃), δ 25.8 (vt, J_{P-C} = 8 Hz, P(CHMe₂)₃), δ 113.9 (s, *C*₆H₅), δ 115.9 (s, *C*₆H₅), δ 120.4 (s, *C*₆H₅), δ 127.2 (s, *C*₆H₅), δ 129.1 (s, *C*₆H₅), δ 129.7 (s, *C*₆H₅), δ 143.3 (s, *C*₆H₅), δ 167.0 (s, *C*₆H₅), δ 247.9 (t, J_{P-C} = 20 Hz, RuCPh).

$Ru(OPh)(PCy_3)_2(CPh).$

Under argon, 200 mg (0.243 mmol) RuCb(PCy₃)₂(=CHPh) and 56.4 mg (0.486 mmol) NaOPh were stirred in 20 mL THF for 12 hours at room temperature. The volatiles were removed to a liquid N₂ trap and the residue was dried overnight *in vacuo* to remove HOPh. The green solid was extracted with 15 mL toluene, filtered, and the resulting solution was reduced to near dryness. Pentane (20 mL) was then added to precipitate a light green solid that was separated via cannula, washed with pentane, and dried *in vacuo*. Isolated yield: 125 mg (61 %). ¹H NMR (400 MHz, C₆D₆, 20 °C): δ 1.03, 1.25, 1.62, 1.75, 1.96, 2.07, 2.28 (m, 66H, P(C₆H₁₁)₃), δ 6.58 (d, ³J_{H-H} = 7 Hz, 2H, *o*-C₆H₅), δ 6.67 (t, ³J_{H-H} = 7 Hz, 1H, *p*-C₆H₅), δ 6.80 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅), δ 7.00 (t, ³J_{H-H} = 7 Hz, 1H, *p*-C₆H₅), δ 7.26 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅), δ 7.72 (d, ³J_{H-H} = 7 Hz, 2H, *o*-C₆H₅). ³¹P{¹H}</sup> NMR (162 MHz, C₆D₆, 20 °C): δ 43.8 (s).

RuCl(OPh)(PCy₃)₂(=CHPh) and Ru(OPh)₂(PCy₃)₂(=CHPh).

Under argon, 15.0 mg (0.018 mmol) RuCl₂(PCy₃)₂(=CHPh) and 4.2 mg (0.036 mmol) NaOPh were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. NMR spectra were taken starting immediately, in 10-15 minute intervals for 60 minutes. During the course of the reaction to produce Ru(OPh)(PCy₃)₂(CPh) and HOPh, two intermediates were seen in low population (~10-15 %). The first to appear (10 min) we attribute to RuCl(OPh)(PCy₃)₂(=CHPh) and last to disappear (30 min) we assign as Ru(OPh)₂(PCy₃)₂(=CHPh) from their similar Ru=CHPh and RuP signals relative to RuCl₂(PCy₃)₂(=CHPh) and the fact that *no* free PCy₃ is observed. Selected NMR data follows. RuCl(OPh)(PCy₃)₂(=CHPh): ¹H NMR (400 MHz, THF-d₈, 20 °C): δ 19.30 (br s, 1H, Ru=CHPh). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20 °C): δ 48.9 (s). Ru(OPh)₂(PCy₃)₂(=CHPh): ¹H NMR (400 MHz, THF-d₈, 20 °C): δ 18.29 (br s, 1H, Ru=CHPh). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20 °C): δ 42.6 (s).

$Ru(O^{t}Bu)_{2}(P^{i}Pr_{3})(=CHPh).$

250 mg (0.429 mmol) RuCl₂(PⁱPr₃)₂(=CHPh) and 82.5 mg (0.858 mmol) NaO^tBu were stirred in 20 mL THF for 3 hours at room temperature and the solvent was removed *in vacuo*. The dark red-brown residue was extracted into 20 mL pentane, filtered, and the volatiles were removed to a liquid N₂ trap. The red-brown oil solidified to a pasty solid after drying *in vacuo* for 5 days to remove the liberated PⁱPr₃. Isolated yield: 175 mg (87 %). ¹H NMR (300 MHz, C₆D₆, 20 °C): δ 1.22 (dd, ³J_{P-H} = 14 Hz, ³J_{H-H} = 7 Hz, 18H, P(CHMe₂)₃), δ 1.28 (s, 18H, OCMe₃), δ 2.31 (m, 3H, P(CHMe₂)₃), δ 7.16 (t, ³J_{H-H} = 8 Hz, 1H, *p*-C₆H₅), δ 7.27 (apparent t, ³J_{H-H} = 8 Hz, 2H, *m*-C₆H₅), δ 7.86 (d, ³J_{H-H} = 8 Hz, 2H, *o*-C₆H₅), δ 15.36 (d, ³J_{P-H} = 5 Hz, 1H, Ru=CHPh). ³¹P{¹H} NMR (121 MHz, C₆D₆, 20 °C): δ 93.2 (s). The far downfield δ (³¹P) value for this and related compounds is consistent with P *trans* to an empty coordination site. ¹³C{¹H} NMR (75 MHz, C₆D₆, 20 °C): δ 19.3 (s, P(CHMe₂)₃), δ 23.6 (d, J_{P-C} = 17 Hz, P(CHMe₂)₃), δ 34.2 (s, OCMe₃), δ 74.1 (s, OCMe₃), δ 124.2 (s, *m*-C₆H₅), δ 124.9 (s, *p*-C₆H₅), δ 129.5 (s, *p*-C₆H₅), δ 151.7 (s, *ipso*-C₆H₅), δ 230.1 (d, J_{P-C} = 16 Hz, Ru=CHPh).

$Ru(OAd)_2(P^iPr_3)(=CHPh).$

Under argon, 30.0 mg (0.052 mmol) RuCl₂(PⁱPr₃)₂(=CHPh) and 21.8 mg (0.104 mmol) NaOAd·0.5 THF were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. ¹H and ³¹P{¹H} NMR spectra taken after 12 hours show quantitative conversion to the title compound and equimolar free PⁱPr₃. ¹H NMR (400 MHz, THF-d₈, 20 °C): δ 1.36 (dd, ³J_{P-H} = 14 Hz, ³J_{H-H} = 7 Hz, 18H, P(CH*Me*₂)₃), δ 1.37 (AB pattern, ²J_{H-H} = 10 Hz, 12H, OC₁₀*H*₁₅), δ 1.51 (AB pattern, ²J_{H-H} = 12 Hz, 12H, OC₁₀*H*₁₅), δ 1.94 (br s, 6H, OC₁₀*H*₁₅), δ 2.59 (m, 3H, P(C*H*Me₂), δ 7.20 (t, ³J_{H-H} = 7 Hz, 1H, *p*-C₆*H*₅), δ 7.26 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆*H*₅), δ 7.70 (d, ³J_{H-H} = 7 Hz, 2H, *o*-C₆*H*₅), δ 15.22 (d, ³J_{P-H} = 4 Hz, 1H, Ru=C*H*Ph). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20 °C): δ 93.4 (s). ¹³C{¹H} NMR (75 MHz, THF-d₈, 20 °C): δ 19.4 (d, ²J_{P-C} = 2 Hz, P(CH*Me*₂)₃), δ 22.6 (d, J_{P-C} = 18 Hz, P(CHMe₂)₃), δ 32.4 (s, OC₁₀H₁₅), δ 37.6 (s, OC₁₀H₁₅), δ 49.1 (s, OC₁₀H₁₅), δ 73.4 (s, OC₁₀H₁₅), δ 124.6 (s, *m*-C₆H₅), δ 125.0 (s, *p*-C₆H₅), δ 129.5 (s, *p*-C₆H₅), δ 152.2 (s, *ipso*-C₆H₅), δ 229.8 (d, J_{P-C} = 16 Hz, Ru=CHPh).

$Ru(O^tBu)_2(PCy_3)(=CHPh).$

Under argon, 15.0 mg (0.018 mmol) RuCl₂(PCy₃)₂(=CHPh) and 3.5 mg (0.036 mmol) NaO^tBu were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. ¹H and ³¹P{¹H} NMR spectra taken after 3 hours show quantitative conversion to the title compound and equimolar free PCy₃. ¹H NMR (400 MHz, THF-d₈, 20 °C): δ 1.04 (s, 18H, OC*Me*₃), δ 1.26, 1.79 (br m, 30H, P(C₆H₁₁)₃), δ 2.37 (m, 3H, P(C₆H₁₁)₃), δ 7.20 (t, ³J_{H-H} = 7 Hz, 1H, *p*-C₆H₅), δ 7.25 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅), δ 7.61 (d, ³J_{H-H} = 7 Hz, 2H, *o*-C₆H₅), δ 15.31 (d, ³J_{P-H} = 5 Hz, 1H, Ru=CHPh). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20 °C): δ 83.9 (s).

Ru(OAd)₂(PCy₃)(=CHPh).

Under argon, 15.0 mg (0.018 mmol) RuCb(PⁱPr₃)₂(=CHPh) and 7.6 mg (0.036 mmol) NaOAd·0.5 THF were combined in 0.5 mL THF-d₈ and added to an NMR tube equipped with a Teflon seal. ¹H and ³¹P{¹H} NMR spectra taken after 12 hours show quantitative conversion to the title compound and equimolar free PCy₃. ¹H NMR (400 MHz, THF-d₈, 20 °C): δ 1.26, 1.79 (br m, 30H, P(C₆H₁₁)₃), δ 1.51 (m, 12H, OC₁₀H₁₅), δ 1.63 (m, 12H, OC₁₀H₁₅), δ 1.94 (br s, 6H, OC₁₀H₁₅), δ 2.37 (m, 3H, P(C₆H₁₁)₃), δ 7.19 (t, ³J_{H-H} = 7 Hz, 1H, *p*-C₆H₅), δ 7.26 (ap t, ³J_{H-H} = 7 Hz, 2H, *m*-C₆H₅), δ 7.68 (d, ³J_{H-H} = 7 Hz, 2H, *o*-C₆H₅), δ 15.22 (d, ³J_{P-H} = 4 Hz, 1H, Ru=CHPh). ³¹P{¹H} NMR (162 MHz, THF-d₈, 20 °C): δ 83.4 (s).

Computational Details.

The calculations were carried out using the Gaussian 98⁷ set of programs within the framework of DFT at the B3PW91 level.^{8,9} LANL2DZ effective core potential (quasi-relativistic for Ru) were used to replace the 28 innermost electrons of Ru,¹⁰ as well as the 10 core electrons of P.¹¹ The associated double basis set was used^{10,11} and was augmented by a d polarization function for P.¹² The other atoms were represented by a 6-31 (d,p) basis set (5d).¹³ Full geometry optimization was performed with no symmetry restriction. The stationary point was characterized by analytical calculation of vibrational frequencies.

References

- 1. Wolf, J.; Stüer, W.; Gruenwald, C.; Gevert, O.; Laubender, M.; Werner, H. *Eur. J. Inorg. Chem.* **1998**, 11, 1827-34.
- 2. Wolf, J.; Stüer, W.; Grünwald, C.; Werner, H.; Schwab, P.; Schultz, M. Angew. Chem. *Intl. Ed.* **1998**, 37, 1124-1126.
- 3. Grünwald, C.; Gevert, O.; Wolf, J.; González-Herrero, P.; Werner, H. *Organometallics* **1996**, 1960-1962.
- 4. van der Schaaf, P. A.; Kolly, R.; Hafner, A. Chem. Commun. 2000, 1045-1046.
- 5. Schwab, P. Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
- 6. Schwab, P.; France, M. B.; Willer, J. W.; Grubbs, R. H. Angew. Chem. Intl. Ed. Engl. 1995, 34, 2039-2041.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98, Revision A7*, Gaussian, Inc., Pittsburgh, Pennsylvania, 1998.
- 8. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 9. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
- 10. Hay, P. G.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- 11. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
- Höllwarth, A. H.; Böhme, M. B.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* **1993**, *208*, 237.
- 13. Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta* **1973**, *28*, 213.