# Supplementary Material (ESI) for New Journal of Chemistry # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2002 data_global _journal_coden_Cambridge 440 loop_ _publ_author_name 'Chick Wilson' _publ_contact_author_name 'Prof Chick Wilson' _publ_contact_author_address ; ISIS Facility CLRC Rutherford Appleton Laboratory Chilton Didcot Oxon OX11 0QX UNITED KINGDOM ; _publ_contact_author_email 'C.C.WILSON@RL.AC.UK' _publ_requested_journal 'New Journal of Chemistry' _publ_section_title ; Interesting proton behaviour in molecular structures. Variable temperature neutron diffraction and ab initio study of acetylsalicylic acid: characterising librational motions and comparing protons in different hydrogen bonding potentials ; data_Aspirin_100K _database_code_CSD 195133 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.233(3) _cell_length_b 6.5440(10) _cell_length_c 11.231(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.89(2) _cell_angle_gamma 90.00 _cell_volume 821.2(3) _cell_formula_units_Z 4 _cell_measurement_temperature 100(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.456 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.16 #_cell_measurement_sin(theta)/lambda_max 0.88 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 100(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 5560 _diffrn_reflns_av_R_equivalents 0.058 _diffrn_reflns_av_sigmaI/netI 0.0676 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 28 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -27 _diffrn_reflns_limit_l_max 24 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 2645 _reflns_number_gt 2644 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.01 #_diffrn_reflns_sin(theta)/lambda_max 0.98 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0763P)^2^+0.3996P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 2645 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0797 _refine_ls_R_factor_gt 0.0797 _refine_ls_wR_factor_ref 0.1961 _refine_ls_wR_factor_gt 0.1961 _refine_ls_goodness_of_fit_ref 1.091 _refine_ls_restrained_S_all 1.091 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.15366(19) 0.5596(3) 0.06676(19) 0.0092(3) Uani 1 d . . . C2 C 0.24765(18) 0.4815(3) 0.00743(19) 0.0097(3) Uani 1 d . . . C3 C 0.3003(2) 0.2959(3) 0.0404(2) 0.0125(3) Uani 1 d . . . C4 C 0.2612(2) 0.1855(4) 0.1348(2) 0.0142(4) Uani 1 d . . . C5 C 0.1683(2) 0.2607(3) 0.1953(2) 0.0126(3) Uani 1 d . . . C6 C 0.11529(19) 0.4451(3) 0.16083(19) 0.0106(3) Uani 1 d . . . C7 C 0.09010(18) 0.7554(3) 0.03766(18) 0.0091(3) Uani 1 d . . . C8 C 0.36716(19) 0.7373(3) -0.06324(19) 0.0105(3) Uani 1 d . . . C9 C 0.3991(2) 0.8411(4) -0.1736(2) 0.0170(4) Uani 1 d . . . O1 O 0.1232(2) 0.8581(4) -0.0533(3) 0.0137(4) Uani 1 d . . . O2 O 0.0101(3) 0.8133(4) 0.0956(2) 0.0146(4) Uani 1 d . . . O3 O 0.2888(2) 0.5818(4) -0.0894(2) 0.0106(3) Uani 1 d . . . O4 O 0.4044(3) 0.7810(5) 0.0377(2) 0.0172(5) Uani 1 d . . . H1 H 0.3721(6) 0.2399(10) -0.0081(6) 0.0300(12) Uani 1 d . . . H2 H 0.3025(7) 0.0414(9) 0.1597(7) 0.0314(13) Uani 1 d . . . H3 H 0.1385(6) 0.1765(10) 0.2707(6) 0.0291(11) Uani 1 d . . . H4 H 0.0426(5) 0.5050(10) 0.2072(6) 0.0271(10) Uani 1 d . . . H5 H 0.4621(9) 0.9609(14) -0.1498(8) 0.0441(19) Uani 1 d . . . H6 H 0.3194(9) 0.898(3) -0.2233(11) 0.070(4) Uani 1 d . . . H7 H 0.4391(14) 0.7341(16) -0.2313(10) 0.065(4) Uani 1 d . . . H8 H 0.0720(5) 0.9843(8) -0.0673(5) 0.0238(9) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0091(7) 0.0091(6) 0.0095(7) 0.0010(5) 0.0011(5) 0.0010(5) C2 0.0085(6) 0.0096(6) 0.0111(7) -0.0008(6) 0.0017(5) 0.0010(5) C3 0.0119(8) 0.0099(7) 0.0158(8) -0.0003(6) 0.0026(6) 0.0028(6) C4 0.0150(9) 0.0099(7) 0.0179(9) 0.0016(6) 0.0023(7) 0.0022(6) C5 0.0129(8) 0.0117(7) 0.0134(7) 0.0036(6) 0.0019(6) 0.0020(6) C6 0.0097(7) 0.0111(7) 0.0111(7) 0.0015(6) 0.0018(6) 0.0010(6) C7 0.0093(6) 0.0089(6) 0.0092(6) 0.0006(5) 0.0012(5) 0.0013(5) C8 0.0097(6) 0.0128(7) 0.0092(6) -0.0006(6) 0.0016(5) -0.0015(6) C9 0.0163(9) 0.0223(10) 0.0124(8) 0.0031(7) 0.0014(7) -0.0049(8) O1 0.0131(9) 0.0129(8) 0.0158(9) 0.0047(7) 0.0050(7) 0.0034(7) O2 0.0161(10) 0.0147(9) 0.0142(9) 0.0037(7) 0.0072(8) 0.0060(8) O3 0.0118(8) 0.0123(8) 0.0078(7) -0.0014(6) 0.0015(6) -0.0010(7) O4 0.0188(11) 0.0212(11) 0.0114(9) -0.0022(8) 0.0008(8) -0.0085(9) H1 0.029(3) 0.028(2) 0.035(3) 0.004(2) 0.015(2) 0.011(2) H2 0.038(3) 0.0166(19) 0.040(3) 0.007(2) 0.006(3) 0.0086(19) H3 0.031(3) 0.026(2) 0.032(3) 0.010(2) 0.011(2) 0.003(2) H4 0.023(2) 0.029(2) 0.032(3) 0.005(2) 0.013(2) 0.0067(19) H5 0.053(5) 0.042(4) 0.039(4) 0.001(3) 0.009(3) -0.027(4) H6 0.032(4) 0.117(10) 0.058(6) 0.060(7) -0.008(4) -0.005(5) H7 0.113(10) 0.043(4) 0.048(5) -0.016(4) 0.051(6) -0.014(5) H8 0.026(2) 0.0193(17) 0.027(2) 0.0069(17) 0.0069(18) 0.0064(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.399(3) . ? C1 C2 1.402(3) . ? C1 C7 1.487(3) . ? C2 C3 1.384(3) . ? C2 O3 1.390(3) . ? C3 C4 1.391(3) . ? C3 H1 1.082(6) . ? C4 C5 1.392(3) . ? C4 H2 1.075(6) . ? C5 C6 1.384(3) . ? C5 H3 1.091(6) . ? C6 H4 1.085(6) . ? C7 O2 1.222(3) . ? C7 O1 1.308(3) . ? C8 O4 1.202(3) . ? C8 O3 1.358(3) . ? C8 C9 1.489(3) . ? C9 H5 1.071(8) . ? C9 H6 1.071(9) . ? C9 H7 1.082(10) . ? O1 H8 1.009(6) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 117.98(18) . . ? C6 C1 C7 116.70(18) . . ? C2 C1 C7 125.32(18) . . ? C3 C2 O3 117.1(2) . . ? C3 C2 C1 120.99(19) . . ? O3 C2 C1 121.8(2) . . ? C4 C3 C2 120.0(2) . . ? C4 C3 H1 121.1(4) . . ? C2 C3 H1 118.9(4) . . ? C3 C4 C5 120.0(2) . . ? C3 C4 H2 119.5(5) . . ? C5 C4 H2 120.5(5) . . ? C6 C5 C4 119.6(2) . . ? C6 C5 H3 120.0(4) . . ? C4 C5 H3 120.4(4) . . ? C5 C6 C1 121.4(2) . . ? C5 C6 H4 120.2(4) . . ? C1 C6 H4 118.3(4) . . ? O2 C7 O1 122.7(2) . . ? O2 C7 C1 120.8(2) . . ? O1 C7 C1 116.5(2) . . ? O4 C8 O3 122.5(2) . . ? O4 C8 C9 125.9(2) . . ? O3 C8 C9 111.6(2) . . ? C8 C9 H5 109.5(5) . . ? C8 C9 H6 109.3(6) . . ? H5 C9 H6 111.9(10) . . ? C8 C9 H7 110.7(6) . . ? H5 C9 H7 108.6(9) . . ? H6 C9 H7 106.8(13) . . ? C7 O1 H8 109.8(4) . . ? C8 O3 C2 116.4(2) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.009(6) 1.627(6) 2.635(4) 177.7(6) 3_575 _refine_diff_density_max 0.201 _refine_diff_density_min -0.211 _refine_diff_density_rms 0.046 data_Aspirin_140K _database_code_CSD 195134 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.273(3) _cell_length_b 6.5550(10) _cell_length_c 11.271(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.82(2) _cell_angle_gamma 90.00 _cell_volume 828.6(3) _cell_formula_units_Z 4 _cell_measurement_temperature 140(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.443 _exptl_crystal_density method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.88 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 140(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 3227 _diffrn_reflns_av_R_equivalents 0.064 _diffrn_reflns_av_sigmaI/netI 0.0791 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 23 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -20 _diffrn_reflns_limit_l_max 25 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 1525 _reflns_number_gt 1523 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.01 #_diffrn_reflns_sin(theta)/lambda_max 0.86 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0984P)^2^+0.3483P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 1525 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0878 _refine_ls_R_factor_gt 0.0877 _refine_ls_wR_factor_ref 0.2084 _refine_ls_wR_factor_gt 0.2084 _refine_ls_goodness_of_fit_ref 1.167 _refine_ls_restrained_S_all 1.167 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1538(3) 0.5615(6) 0.0669(3) 0.0124(6) Uani 1 d . . . C2 C 0.2472(3) 0.4830(5) 0.0077(3) 0.0123(6) Uani 1 d . . . C3 C 0.3001(4) 0.2986(6) 0.0403(4) 0.0181(7) Uani 1 d . . . C4 C 0.2607(4) 0.1873(6) 0.1344(4) 0.0199(8) Uani 1 d . . . C5 C 0.1692(4) 0.2619(6) 0.1948(4) 0.0169(7) Uani 1 d . . . C6 C 0.1154(3) 0.4470(6) 0.1610(4) 0.0142(6) Uani 1 d . . . C7 C 0.0902(3) 0.7555(6) 0.0373(3) 0.0130(6) Uani 1 d . . . C8 C 0.3670(3) 0.7371(6) -0.0636(3) 0.0151(6) Uani 1 d . . . C9 C 0.3986(4) 0.8397(8) -0.1732(4) 0.0232(8) Uani 1 d . . . O1 O 0.1225(4) 0.8587(7) -0.0531(4) 0.0183(8) Uani 1 d . . . O2 O 0.0101(4) 0.8133(7) 0.0955(4) 0.0194(9) Uani 1 d . . . O3 O 0.2878(4) 0.5826(6) -0.0894(4) 0.0140(7) Uani 1 d . . . O4 O 0.4042(5) 0.7813(8) 0.0372(4) 0.0234(10) Uani 1 d . . . H1 H 0.3728(10) 0.2423(16) -0.0081(11) 0.039(2) Uani 1 d . . . H2 H 0.3022(11) 0.0440(15) 0.1611(11) 0.039(2) Uani 1 d . . . H3 H 0.1387(10) 0.1777(16) 0.2711(10) 0.035(2) Uani 1 d . . . H4 H 0.0417(8) 0.5045(15) 0.2069(9) 0.0293(18) Uani 1 d . . . H5 H 0.4621(13) 0.959(2) -0.1507(13) 0.055(4) Uani 1 d . . . H6 H 0.3195(15) 0.891(4) -0.2244(18) 0.089(8) Uani 1 d . . . H7 H 0.435(2) 0.733(2) -0.2327(17) 0.083(7) Uani 1 d . . . H8 H 0.0717(9) 0.9844(14) -0.0659(8) 0.0282(17) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0125(14) 0.0109(12) 0.0138(15) 0.0014(11) 0.0004(12) 0.0012(11) C2 0.0115(14) 0.0113(13) 0.0143(14) -0.0016(11) 0.0017(12) 0.0017(10) C3 0.0175(17) 0.0143(14) 0.0228(18) -0.0003(14) 0.0042(14) 0.0043(12) C4 0.0202(18) 0.0130(15) 0.026(2) 0.0009(13) 0.0027(16) 0.0027(13) C5 0.0162(16) 0.0177(15) 0.0167(16) 0.0053(13) 0.0001(12) -0.0008(13) C6 0.0138(15) 0.0124(13) 0.0167(16) 0.0011(12) 0.0026(13) 0.0019(12) C7 0.0140(14) 0.0136(14) 0.0119(14) 0.0001(12) 0.0043(11) 0.0006(12) C8 0.0135(14) 0.0181(14) 0.0139(14) -0.0006(13) 0.0025(11) -0.0018(12) C9 0.0191(18) 0.032(2) 0.0181(18) 0.0046(16) 0.0007(14) -0.0059(16) O1 0.0174(19) 0.0168(17) 0.022(2) 0.0069(15) 0.0071(16) 0.0060(14) O2 0.021(2) 0.0195(18) 0.0197(19) 0.0049(15) 0.0091(17) 0.0092(16) O3 0.0151(18) 0.0151(16) 0.0119(17) -0.0018(13) 0.0020(14) -0.0013(13) O4 0.027(2) 0.028(2) 0.0156(18) -0.0018(17) 0.0022(16) -0.0109(18) H1 0.038(5) 0.031(4) 0.053(6) 0.005(4) 0.027(5) 0.013(4) H2 0.044(6) 0.022(4) 0.051(6) 0.009(4) 0.007(5) 0.013(4) H3 0.040(5) 0.030(4) 0.036(5) 0.011(4) 0.012(4) 0.002(4) H4 0.024(4) 0.034(4) 0.032(4) 0.005(3) 0.012(3) 0.007(3) H5 0.061(8) 0.052(7) 0.050(7) 0.010(6) 0.001(6) -0.040(6) H6 0.046(8) 0.141(19) 0.075(11) 0.071(13) -0.018(7) -0.010(10) H7 0.147(19) 0.045(7) 0.070(10) -0.011(7) 0.074(12) -0.014(9) H8 0.035(4) 0.025(4) 0.026(4) 0.007(3) 0.006(3) 0.011(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.400(5) . ? C1 C6 1.403(5) . ? C1 C7 1.481(5) . ? C2 C3 1.381(5) . ? C2 O3 1.391(6) . ? C3 C4 1.396(6) . ? C3 H1 1.093(10) . ? C4 C5 1.382(6) . ? C4 H2 1.078(10) . ? C5 C6 1.392(6) . ? C5 H3 1.106(10) . ? C6 H4 1.090(9) . ? C7 O2 1.228(5) . ? C7 O1 1.305(6) . ? C8 O4 1.206(6) . ? C8 O3 1.362(6) . ? C8 C9 1.482(6) . ? C9 H5 1.074(12) . ? C9 H6 1.067(16) . ? C9 H7 1.080(16) . ? O1 H8 1.006(10) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 117.9(3) . . ? C2 C1 C7 125.3(3) . . ? C6 C1 C7 116.8(3) . . ? C3 C2 O3 116.9(4) . . ? C3 C2 C1 121.3(3) . . ? O3 C2 C1 121.7(3) . . ? C2 C3 C4 119.8(4) . . ? C2 C3 H1 119.2(7) . . ? C4 C3 H1 121.0(7) . . ? C5 C4 C3 120.0(4) . . ? C5 C4 H2 119.7(8) . . ? C3 C4 H2 120.3(7) . . ? C4 C5 C6 120.0(4) . . ? C4 C5 H3 120.9(7) . . ? C6 C5 H3 119.1(7) . . ? C5 C6 C1 120.9(4) . . ? C5 C6 H4 120.3(6) . . ? C1 C6 H4 118.8(6) . . ? O2 C7 O1 122.4(4) . . ? O2 C7 C1 120.7(4) . . ? O1 C7 C1 117.0(4) . . ? O4 C8 O3 122.6(4) . . ? O4 C8 C9 125.9(4) . . ? O3 C8 C9 111.5(4) . . ? C8 C9 H5 110.2(8) . . ? C8 C9 H6 109.7(10) . . ? H5 C9 H6 113.4(16) . . ? C8 C9 H7 111.3(10) . . ? H5 C9 H7 109.2(15) . . ? H6 C9 H7 103(2) . . ? C7 O1 H8 109.7(7) . . ? C8 O3 C2 116.2(4) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.003(9) 1.627(9) 2.629(6) 176.4(9) 3_575 _refine_diff_density_max 0.178 _refine_diff_density_min -0.149 _refine_diff_density_rms 0.038 data_Aspirin_180K _database_code_CSD 195135 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.305(3) _cell_length_b 6.5630(10) _cell_length_c 11.305(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.88(2) _cell_angle_gamma 90.00 _cell_volume 834.4(3) _cell_formula_units_Z 4 _cell_measurement_temperature 180(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.433 _exptl_crystal_density method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 ##_cell_measurement_sin(theta)/lambda_max 0.78 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 180(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 2572 _diffrn_reflns_av_R_equivalents 0.065 _diffrn_reflns_av_sigmaI/netI 0.0736 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 22 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_l_min -37 _diffrn_reflns_limit_l_max 30 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 1190 _reflns_number_gt 1189 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.88 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0870P)^2^+0.3441P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 1190 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0885 _refine_ls_R_factor_gt 0.0884 _refine_ls_wR_factor_ref 0.2008 _refine_ls_wR_factor_gt 0.2008 _refine_ls_goodness_of_fit_ref 1.161 _refine_ls_restrained_S_all 1.161 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1537(4) 0.5621(7) 0.0669(4) 0.0184(8) Uani 1 d . . . C2 C 0.2469(4) 0.4843(6) 0.0078(4) 0.0170(8) Uani 1 d . . . C3 C 0.3000(4) 0.3002(7) 0.0405(5) 0.0248(10) Uani 1 d . . . C4 C 0.2609(5) 0.1885(7) 0.1348(5) 0.0258(10) Uani 1 d . . . C5 C 0.1690(5) 0.2637(8) 0.1944(5) 0.0243(9) Uani 1 d . . . C6 C 0.1161(4) 0.4475(7) 0.1610(4) 0.0195(8) Uani 1 d . . . C7 C 0.0901(4) 0.7550(7) 0.0371(4) 0.0175(8) Uani 1 d . . . C8 C 0.3666(4) 0.7380(7) -0.0633(4) 0.0210(9) Uani 1 d . . . C9 C 0.3979(5) 0.8399(10) -0.1734(5) 0.0310(12) Uani 1 d . . . O1 O 0.1227(5) 0.8586(9) -0.0528(6) 0.0263(12) Uani 1 d . . . O2 O 0.0106(6) 0.8127(9) 0.0957(5) 0.0271(12) Uani 1 d . . . O3 O 0.2871(5) 0.5836(8) -0.0896(5) 0.0208(10) Uani 1 d . . . O4 O 0.4036(6) 0.7813(10) 0.0367(6) 0.0323(14) Uani 1 d . . . H1 H 0.3721(11) 0.2451(19) -0.0089(13) 0.047(3) Uani 1 d . . . H2 H 0.3036(13) 0.0459(17) 0.1607(12) 0.045(3) Uani 1 d . . . H3 H 0.1389(12) 0.1770(19) 0.2702(12) 0.044(3) Uani 1 d . . . H4 H 0.0415(10) 0.5074(19) 0.2061(12) 0.041(3) Uani 1 d . . . H5 H 0.4618(16) 0.960(3) -0.1496(14) 0.067(5) Uani 1 d . . . H6 H 0.3215(16) 0.897(5) -0.221(2) 0.115(11) Uani 1 d . . . H7 H 0.432(3) 0.735(3) -0.233(2) 0.100(9) Uani 1 d . . . H8 H 0.0710(10) 0.9832(17) -0.0664(11) 0.037(2) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.019(2) 0.0180(17) 0.018(2) 0.0020(15) 0.0007(16) 0.0008(15) C2 0.0173(19) 0.0169(17) 0.0169(19) -0.0018(15) 0.0024(15) 0.0007(14) C3 0.021(2) 0.019(2) 0.034(3) -0.0018(18) 0.0066(19) 0.0062(16) C4 0.028(2) 0.017(2) 0.032(3) 0.0023(18) 0.004(2) 0.0063(17) C5 0.024(2) 0.023(2) 0.025(2) 0.0064(18) 0.0016(17) 0.0009(17) C6 0.0171(19) 0.0203(18) 0.021(2) 0.0019(16) 0.0031(16) 0.0013(15) C7 0.0173(18) 0.0191(19) 0.0164(19) 0.0017(17) 0.0034(14) 0.0025(16) C8 0.0167(18) 0.027(2) 0.020(2) -0.0010(18) 0.0036(16) -0.0015(16) C9 0.025(2) 0.045(3) 0.023(2) 0.002(2) 0.0024(19) -0.012(2) O1 0.027(3) 0.020(2) 0.033(3) 0.008(2) 0.012(2) 0.009(2) O2 0.033(3) 0.027(3) 0.023(3) 0.006(2) 0.009(2) 0.013(2) O3 0.021(2) 0.023(2) 0.019(2) -0.0027(19) 0.0042(19) -0.0032(19) O4 0.036(3) 0.035(3) 0.025(3) -0.002(2) 0.002(2) -0.018(3) H1 0.045(6) 0.037(5) 0.067(8) 0.003(5) 0.033(6) 0.009(5) H2 0.061(8) 0.025(5) 0.049(7) 0.009(5) 0.002(6) 0.013(5) H3 0.054(7) 0.034(5) 0.045(6) 0.020(5) 0.005(5) -0.003(5) H4 0.030(5) 0.041(6) 0.054(7) 0.007(5) 0.017(5) 0.006(4) H5 0.075(10) 0.080(10) 0.047(8) 0.008(7) 0.007(7) -0.049(9) H6 0.046(9) 0.20(3) 0.091(15) 0.100(19) -0.019(9) -0.007(12) H7 0.18(2) 0.057(10) 0.080(13) -0.019(9) 0.077(15) -0.023(12) H8 0.037(5) 0.033(5) 0.042(6) 0.011(4) 0.010(4) 0.008(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.401(6) . ? C1 C6 1.405(7) . ? C1 C7 1.477(6) . ? C2 C3 1.382(6) . ? C2 O3 1.394(7) . ? C3 C4 1.402(8) . ? C3 H1 1.096(12) . ? C4 C5 1.386(8) . ? C4 H2 1.080(12) . ? C5 C6 1.382(7) . ? C5 H3 1.110(13) . ? C6 H4 1.101(12) . ? C7 O2 1.229(7) . ? C7 O1 1.307(7) . ? C8 O4 1.199(7) . ? C8 O3 1.367(7) . ? C8 C9 1.487(7) . ? C9 H5 1.082(16) . ? C9 H6 1.042(18) . ? C9 H7 1.07(2) . ? O1 H8 1.008(12) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 117.8(4) . . ? C2 C1 C7 125.2(4) . . ? C6 C1 C7 117.0(4) . . ? C3 C2 O3 116.9(4) . . ? C3 C2 C1 121.2(4) . . ? O3 C2 C1 121.8(4) . . ? C2 C3 C4 119.9(4) . . ? C2 C3 H1 118.5(9) . . ? C4 C3 H1 121.6(8) . . ? C5 C4 C3 119.6(4) . . ? C5 C4 H2 120.9(9) . . ? C3 C4 H2 119.5(9) . . ? C6 C5 C4 120.2(5) . . ? C6 C5 H3 120.0(9) . . ? C4 C5 H3 119.8(8) . . ? C5 C6 C1 121.2(4) . . ? C5 C6 H4 121.1(8) . . ? C1 C6 H4 117.7(8) . . ? O2 C7 O1 122.6(5) . . ? O2 C7 C1 120.4(4) . . ? O1 C7 C1 116.9(4) . . ? O4 C8 O3 122.6(5) . . ? O4 C8 C9 126.3(5) . . ? O3 C8 C9 111.1(4) . . ? C8 C9 H5 109.2(9) . . ? C8 C9 H6 110.0(12) . . ? H5 C9 H6 111(2) . . ? C8 C9 H7 111.7(12) . . ? H5 C9 H7 110.4(18) . . ? H6 C9 H7 104(3) . . ? C7 O1 H8 109.6(8) . . ? C8 O3 C2 115.8(5) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.003(12) 1.635(12) 2.637(8) 176.8(11) 3_575 _refine_diff_density_max 0.153 _refine_diff_density_min -0.133 _refine_diff_density_rms 0.030 data_Aspirin_20K _database_code_CSD 195136 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.186(3) _cell_length_b 6.5400(10) _cell_length_c 11.217(3) _cell_angle_alpha 90.00 _cell_angle_beta 96.07(2) _cell_angle_gamma 90.00 _cell_volume 816.0(3) _cell_formula_units_Z 4 _cell_measurement_temperature 20(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.465 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.17 #_cell_measurement_sin(theta)/lambda_max 0.92 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 20(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 5399 _diffrn_reflns_av_R_equivalents 0.061 _diffrn_reflns_av_sigmaI/netI 0.1123 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 30 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min -31 _diffrn_reflns_limit_l_max 30 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 2721 _reflns_number_gt 2720 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.01 #_diffrn_reflns_sin(theta)/lambda_max 1.03 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0621P)^2^+0.6049P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 2721 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0876 _refine_ls_R_factor_gt 0.0876 _refine_ls_wR_factor_ref 0.1952 _refine_ls_wR_factor_gt 0.1952 _refine_ls_goodness_of_fit_ref 1.129 _refine_ls_restrained_S_all 1.129 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1538(2) 0.5585(3) 0.0667(2) 0.0039(3) Uani 1 d . . . C2 C 0.2480(2) 0.4795(3) 0.0073(2) 0.0037(3) Uani 1 d . . . C3 C 0.3007(2) 0.2933(3) 0.0405(2) 0.0049(3) Uani 1 d . . . C4 C 0.2612(2) 0.1826(4) 0.1346(2) 0.0056(3) Uani 1 d . . . C5 C 0.1682(2) 0.2586(4) 0.1953(2) 0.0055(3) Uani 1 d . . . C6 C 0.1150(2) 0.4439(3) 0.1611(2) 0.0039(3) Uani 1 d . . . C7 C 0.08996(19) 0.7546(3) 0.03734(19) 0.0032(3) Uani 1 d . . . C8 C 0.3676(2) 0.7369(3) -0.06279(19) 0.0041(3) Uani 1 d . . . C9 C 0.3999(2) 0.8408(4) -0.1737(2) 0.0071(3) Uani 1 d . . . O1 O 0.1242(2) 0.8575(4) -0.0532(3) 0.0053(3) Uani 1 d . . . O2 O 0.0100(3) 0.8130(4) 0.0956(2) 0.0062(4) Uani 1 d . . . O3 O 0.2892(2) 0.5796(4) -0.0893(2) 0.0035(3) Uani 1 d . . . O4 O 0.4042(3) 0.7807(4) 0.0386(2) 0.0065(4) Uani 1 d . . . H1 H 0.3737(6) 0.2358(11) -0.0087(7) 0.0207(11) Uani 1 d . . . H2 H 0.3032(7) 0.0374(9) 0.1603(7) 0.0211(12) Uani 1 d . . . H3 H 0.1377(6) 0.1739(10) 0.2708(6) 0.0173(10) Uani 1 d . . . H4 H 0.0415(6) 0.5036(10) 0.2073(7) 0.0186(10) Uani 1 d . . . H5 H 0.4624(9) 0.9660(14) -0.1477(9) 0.0297(17) Uani 1 d . . . H6 H 0.3187(9) 0.8974(19) -0.2249(9) 0.038(2) Uani 1 d . . . H7 H 0.4388(12) 0.7328(14) -0.2330(10) 0.040(2) Uani 1 d . . . H8 H 0.0722(6) 0.9846(9) -0.0667(6) 0.0150(9) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0037(7) 0.0034(6) 0.0048(7) 0.0009(5) 0.0008(6) 0.0009(5) C2 0.0032(7) 0.0039(6) 0.0043(7) -0.0006(5) 0.0019(6) 0.0008(5) C3 0.0040(7) 0.0039(6) 0.0068(8) 0.0009(5) 0.0010(6) 0.0018(5) C4 0.0064(8) 0.0037(6) 0.0068(8) 0.0016(6) 0.0004(6) 0.0011(6) C5 0.0059(7) 0.0045(6) 0.0062(7) 0.0017(6) 0.0016(6) 0.0012(6) C6 0.0041(7) 0.0021(6) 0.0055(8) 0.0007(5) 0.0007(6) 0.0012(5) C7 0.0039(6) 0.0027(6) 0.0030(6) 0.0004(6) 0.0002(5) 0.0015(5) C8 0.0040(6) 0.0049(6) 0.0034(6) -0.0001(5) 0.0000(5) -0.0012(5) C9 0.0080(8) 0.0095(8) 0.0036(6) 0.0013(6) 0.0004(6) -0.0020(7) O1 0.0044(8) 0.0054(7) 0.0067(8) 0.0022(7) 0.0034(7) 0.0019(6) O2 0.0075(9) 0.0060(8) 0.0056(8) 0.0015(7) 0.0032(7) 0.0038(7) O3 0.0033(8) 0.0036(7) 0.0034(8) 0.0004(6) -0.0003(6) 0.0000(6) O4 0.0077(9) 0.0073(8) 0.0043(8) -0.0006(6) -0.0006(7) -0.0033(7) H1 0.018(2) 0.020(2) 0.025(3) 0.004(2) 0.011(2) 0.007(2) H2 0.026(3) 0.0122(19) 0.026(3) 0.0065(19) 0.007(2) 0.0081(19) H3 0.019(2) 0.017(2) 0.017(2) 0.0046(18) 0.0058(19) -0.0011(18) H4 0.015(2) 0.019(2) 0.024(3) 0.004(2) 0.009(2) 0.0031(18) H5 0.032(4) 0.029(3) 0.028(4) -0.001(3) 0.003(3) -0.020(3) H6 0.025(3) 0.057(6) 0.029(4) 0.025(4) -0.010(3) -0.002(4) H7 0.062(7) 0.022(3) 0.041(5) -0.004(3) 0.032(5) -0.002(4) H8 0.017(2) 0.0112(16) 0.017(2) 0.0032(16) 0.0029(18) 0.0018(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.403(3) . ? C1 C6 1.404(3) . ? C1 C7 1.488(3) . ? C2 O3 1.385(4) . ? C2 C3 1.387(3) . ? C3 C4 1.390(4) . ? C3 H1 1.100(6) . ? C4 C5 1.394(3) . ? C4 H2 1.084(6) . ? C5 C6 1.386(3) . ? C5 H3 1.096(7) . ? C6 H4 1.090(7) . ? C7 O2 1.223(3) . ? C7 O1 1.309(3) . ? C8 O4 1.202(3) . ? C8 O3 1.365(3) . ? C8 C9 1.495(3) . ? C9 H5 1.096(8) . ? C9 H6 1.087(9) . ? C9 H7 1.091(9) . ? O1 H8 1.017(6) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 118.0(2) . . ? C2 C1 C7 125.4(2) . . ? C6 C1 C7 116.58(19) . . ? O3 C2 C3 117.2(2) . . ? O3 C2 C1 121.7(2) . . ? C3 C2 C1 121.0(2) . . ? C2 C3 C4 120.1(2) . . ? C2 C3 H1 118.9(4) . . ? C4 C3 H1 121.0(4) . . ? C3 C4 C5 119.9(2) . . ? C3 C4 H2 119.7(4) . . ? C5 C4 H2 120.4(4) . . ? C6 C5 C4 119.8(2) . . ? C6 C5 H3 119.7(4) . . ? C4 C5 H3 120.4(4) . . ? C5 C6 C1 121.2(2) . . ? C5 C6 H4 120.3(4) . . ? C1 C6 H4 118.5(4) . . ? O2 C7 O1 123.0(2) . . ? O2 C7 C1 120.8(2) . . ? O1 C7 C1 116.2(2) . . ? O4 C8 O3 122.2(2) . . ? O4 C8 C9 126.3(2) . . ? O3 C8 C9 111.6(2) . . ? C8 C9 H5 108.7(5) . . ? C8 C9 H6 109.4(6) . . ? H5 C9 H6 111.1(9) . . ? C8 C9 H7 111.1(6) . . ? H5 C9 H7 111.2(9) . . ? H6 C9 H7 105.2(11) . . ? C7 O1 H8 109.0(4) . . ? C8 O3 C2 116.5(2) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.018(6) 1.629(6) 2.646(4) 177.0(6) 3_575 _refine_diff_density_max 0.290 _refine_diff_density_min -0.274 _refine_diff_density_rms 0.064 data_Aspirin_220K _database_code_CSD 195137 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.340(3) _cell_length_b 6.5740(10) _cell_length_c 11.318(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.87(2) _cell_angle_gamma 90.00 _cell_volume 839.3(3) _cell_formula_units_Z 4 _cell_measurement_temperature 220(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.424 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.82 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 220(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 2145 _diffrn_reflns_av_R_equivalents 0.059 _diffrn_reflns_av_sigmaI/netI 0.0608 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 19 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 974 _reflns_number_gt 973 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.80 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0659P)^2^+0.6512P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 973 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0903 _refine_ls_R_factor_gt 0.0903 _refine_ls_wR_factor_ref 0.2107 _refine_ls_wR_factor_gt 0.2107 _refine_ls_goodness_of_fit_ref 1.043 _refine_ls_restrained_S_all 1.043 _refine_ls_shift/su_max 0.003 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1543(5) 0.5643(10) 0.0670(6) 0.0260(12) Uani 1 d . . . C2 C 0.2466(5) 0.4854(9) 0.0088(5) 0.0236(12) Uani 1 d . . . C3 C 0.2991(6) 0.3017(11) 0.0412(7) 0.0330(14) Uani 1 d . . . C4 C 0.2610(6) 0.1916(11) 0.1347(6) 0.0326(14) Uani 1 d . . . C5 C 0.1699(6) 0.2647(11) 0.1940(6) 0.0316(14) Uani 1 d . . . C6 C 0.1170(5) 0.4484(9) 0.1601(6) 0.0267(13) Uani 1 d . . . C7 C 0.0903(5) 0.7569(9) 0.0378(5) 0.0228(11) Uani 1 d . . . C8 C 0.3660(5) 0.7370(10) -0.0641(5) 0.0271(12) Uani 1 d . . . C9 C 0.3979(7) 0.8381(13) -0.1743(6) 0.0375(17) Uani 1 d . . . O1 O 0.1217(7) 0.8591(13) -0.0525(8) 0.0344(17) Uani 1 d . . . O2 O 0.0093(7) 0.8126(13) 0.0958(7) 0.0370(18) Uani 1 d . . . O3 O 0.2865(6) 0.5847(11) -0.0888(6) 0.0243(14) Uani 1 d . . . O4 O 0.4037(8) 0.7828(14) 0.0366(7) 0.041(2) Uani 1 d . . . H1 H 0.3712(16) 0.246(3) -0.0100(18) 0.061(4) Uani 1 d . . . H2 H 0.3033(17) 0.047(3) 0.1592(16) 0.057(4) Uani 1 d . . . H3 H 0.1378(15) 0.180(3) 0.2708(15) 0.056(4) Uani 1 d . . . H4 H 0.0412(12) 0.508(3) 0.2062(14) 0.048(4) Uani 1 d . . . H5 H 0.465(2) 0.956(4) -0.1475(18) 0.082(7) Uani 1 d . . . H6 H 0.321(2) 0.903(7) -0.218(3) 0.134(15) Uani 1 d . . . H7 H 0.441(4) 0.739(4) -0.230(3) 0.131(15) Uani 1 d . . . H8 H 0.0683(16) 0.987(3) -0.0683(15) 0.054(4) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.025(3) 0.027(3) 0.026(3) 0.003(2) 0.000(2) 0.002(2) C2 0.020(3) 0.025(3) 0.025(3) -0.005(2) -0.002(2) 0.001(2) C3 0.032(3) 0.029(3) 0.039(4) -0.001(3) 0.008(3) 0.010(3) C4 0.035(3) 0.025(3) 0.038(4) 0.005(3) 0.002(3) 0.008(3) C5 0.030(3) 0.030(3) 0.035(3) 0.008(3) 0.004(2) 0.003(3) C6 0.024(3) 0.024(3) 0.033(3) 0.003(2) 0.007(2) 0.002(2) C7 0.024(2) 0.027(3) 0.018(2) 0.002(2) 0.0061(19) 0.005(2) C8 0.023(3) 0.036(3) 0.023(2) -0.002(3) 0.006(2) -0.003(2) C9 0.034(3) 0.050(4) 0.029(3) 0.006(3) 0.003(3) -0.009(3) O1 0.034(4) 0.029(4) 0.042(4) 0.011(3) 0.014(3) 0.012(3) O2 0.042(4) 0.035(4) 0.036(4) 0.012(3) 0.016(3) 0.024(3) O3 0.026(3) 0.030(3) 0.017(3) -0.002(2) -0.001(3) -0.004(3) O4 0.048(5) 0.047(5) 0.029(4) -0.004(4) 0.004(3) -0.019(4) H1 0.057(9) 0.046(8) 0.087(11) 0.006(8) 0.040(9) 0.022(7) H2 0.069(10) 0.045(8) 0.057(10) 0.010(7) 0.002(8) 0.025(8) H3 0.060(9) 0.051(9) 0.054(9) 0.026(7) -0.002(7) -0.013(8) H4 0.031(6) 0.065(9) 0.050(8) 0.013(7) 0.019(6) 0.022(6) H5 0.106(16) 0.092(14) 0.050(9) 0.006(10) 0.019(10) -0.058(13) H6 0.063(13) 0.22(4) 0.11(2) 0.10(2) -0.015(13) 0.025(18) H7 0.26(4) 0.055(12) 0.096(19) -0.017(13) 0.10(2) -0.006(18) H8 0.055(8) 0.053(9) 0.053(9) 0.021(7) 0.009(7) 0.005(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.392(8) . ? C1 C6 1.400(9) . ? C1 C7 1.480(9) . ? C2 C3 1.380(9) . ? C2 O3 1.397(9) . ? C3 C4 1.387(11) . ? C3 H1 1.111(16) . ? C4 C5 1.375(10) . ? C4 H2 1.085(17) . ? C5 C6 1.385(9) . ? C5 H3 1.123(17) . ? C6 H4 1.121(14) . ? C7 O2 1.238(9) . ? C7 O1 1.303(10) . ? C8 O4 1.214(10) . ? C8 O3 1.357(9) . ? C8 C9 1.490(9) . ? C9 H5 1.10(2) . ? C9 H6 1.05(3) . ? C9 H7 1.06(3) . ? O1 H8 1.04(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 116.9(6) . . ? C2 C1 C7 126.0(5) . . ? C6 C1 C7 117.0(5) . . ? C3 C2 O3 116.9(6) . . ? C3 C2 C1 121.7(6) . . ? O3 C2 C1 121.4(6) . . ? C4 C3 C2 120.0(6) . . ? C4 C3 H1 122.1(11) . . ? C2 C3 H1 117.9(11) . . ? C5 C4 C3 119.9(6) . . ? C5 C4 H2 121.0(12) . . ? C3 C4 H2 119.1(12) . . ? C4 C5 C6 119.7(6) . . ? C4 C5 H3 121.6(12) . . ? C6 C5 H3 118.7(11) . . ? C5 C6 C1 121.8(6) . . ? C5 C6 H4 120.4(10) . . ? C1 C6 H4 117.7(10) . . ? O2 C7 O1 122.8(7) . . ? O2 C7 C1 120.6(6) . . ? O1 C7 C1 116.7(6) . . ? O4 C8 O3 122.6(6) . . ? O4 C8 C9 125.7(7) . . ? O3 C8 C9 111.7(6) . . ? C8 C9 H5 107.5(12) . . ? C8 C9 H6 108.6(18) . . ? H5 C9 H6 111(3) . . ? C8 C9 H7 113.0(16) . . ? H5 C9 H7 104(3) . . ? H6 C9 H7 112(3) . . ? C7 O1 H8 110.4(11) . . ? C8 O3 C2 116.4(6) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.03(2) 1.588(18) 2.621(11) 177.4(16) 3_575 _refine_diff_density_max 0.125 _refine_diff_density_min -0.512 _refine_diff_density_rms 0.035 data_Aspirin_300K _database_code_CSD 195138 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.416(5) _cell_length_b 6.598(2) _cell_length_c 11.483(5) _cell_angle_alpha 90.00 _cell_angle_beta 95.60(3) _cell_angle_gamma 90.00 _cell_volume 860.8(6) _cell_formula_units_Z 4 _cell_measurement_temperature 300(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.389 _exptl_crystal_density method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.17 #_cell_measurement_sin(theta)/lambda_max 0.70 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 300(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 1864 _diffrn_reflns_av_R_equivalents 0.064 _diffrn_reflns_av_sigmaI/netI 0.0575 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 21 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 18 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 748 _reflns_number_gt 748 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.09 #_diffrn_reflns_sin(theta)/lambda_max 0.68 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0708P)^2^+0.4850P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 748 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0873 _refine_ls_R_factor_gt 0.0873 _refine_ls_wR_factor_ref 0.1944 _refine_ls_wR_factor_gt 0.1944 _refine_ls_goodness_of_fit_ref 1.017 _refine_ls_restrained_S_all 1.017 _refine_ls_shift/su_max 0.007 _refine_ls_shift/su_mean 0.002 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1530(6) 0.5638(12) 0.0678(6) 0.0359(16) Uani 1 d . . . C2 C 0.2464(6) 0.4885(12) 0.0087(6) 0.0388(18) Uani 1 d . . . C3 C 0.2982(6) 0.3070(13) 0.0415(8) 0.048(2) Uani 1 d . . . C4 C 0.2602(7) 0.1952(14) 0.1344(8) 0.050(2) Uani 1 d . . . C5 C 0.1693(7) 0.2697(13) 0.1918(7) 0.046(2) Uani 1 d . . . C6 C 0.1168(7) 0.4489(13) 0.1599(7) 0.0412(18) Uani 1 d . . . C7 C 0.0904(6) 0.7582(11) 0.0382(6) 0.0374(17) Uani 1 d . . . C8 C 0.3664(6) 0.7360(13) -0.0628(7) 0.0448(19) Uani 1 d . . . C9 C 0.3966(10) 0.835(2) -0.1720(10) 0.063(3) Uani 1 d . . . O1 O 0.1200(9) 0.8626(17) -0.0507(9) 0.050(2) Uani 1 d . . . O2 O 0.0096(8) 0.8126(15) 0.0955(9) 0.051(2) Uani 1 d . . . O3 O 0.2857(8) 0.5877(15) -0.0879(7) 0.042(2) Uani 1 d . . . O4 O 0.4018(9) 0.7794(18) 0.0354(9) 0.061(3) Uani 1 d . . . H1 H 0.3689(16) 0.247(3) -0.013(2) 0.081(6) Uani 1 d . . . H2 H 0.3028(16) 0.053(3) 0.163(2) 0.074(5) Uani 1 d . . . H3 H 0.1396(16) 0.177(3) 0.2700(17) 0.071(5) Uani 1 d . . . H4 H 0.0469(19) 0.508(3) 0.2061(18) 0.068(5) Uani 1 d . . . H5 H 0.459(2) 0.955(5) -0.149(2) 0.113(10) Uani 1 d . . . H6 H 0.324(3) 0.883(8) -0.228(3) 0.17(2) Uani 1 d . . . H7 H 0.432(5) 0.728(6) -0.230(3) 0.169(19) Uani 1 d . . . H8 H 0.0647(18) 0.993(4) -0.0657(17) 0.075(6) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.037(3) 0.035(4) 0.035(4) -0.004(3) 0.001(3) 0.003(3) C2 0.036(4) 0.043(4) 0.037(4) -0.005(3) -0.002(3) 0.002(3) C3 0.039(4) 0.043(5) 0.065(5) -0.006(4) 0.013(4) 0.008(4) C4 0.053(4) 0.039(5) 0.062(5) 0.004(4) 0.015(4) 0.004(4) C5 0.049(4) 0.043(5) 0.048(4) 0.015(4) 0.010(3) 0.003(4) C6 0.039(4) 0.045(4) 0.041(4) 0.010(4) 0.007(4) -0.002(4) C7 0.037(3) 0.035(4) 0.039(4) 0.002(4) 0.001(3) 0.000(3) C8 0.040(4) 0.053(5) 0.042(4) -0.001(4) 0.003(3) 0.001(4) C9 0.059(6) 0.075(7) 0.053(6) 0.009(5) 0.004(5) -0.017(6) O1 0.055(5) 0.047(5) 0.051(6) 0.016(5) 0.026(5) 0.014(5) O2 0.057(5) 0.045(5) 0.053(5) 0.015(4) 0.012(5) 0.028(5) O3 0.044(4) 0.051(5) 0.032(4) -0.005(4) 0.006(4) -0.001(4) O4 0.067(6) 0.067(7) 0.048(5) -0.003(5) -0.003(5) -0.022(6) H1 0.070(11) 0.081(13) 0.098(13) -0.010(12) 0.037(11) 0.042(11) H2 0.066(11) 0.051(10) 0.104(16) 0.009(10) 0.003(10) 0.004(9) H3 0.083(12) 0.062(10) 0.073(11) 0.042(9) 0.024(10) 0.005(9) H4 0.079(11) 0.049(9) 0.076(12) 0.016(9) 0.012(11) 0.011(9) H5 0.107(16) 0.14(2) 0.093(16) -0.008(16) 0.020(14) -0.080(19) H6 0.11(2) 0.24(5) 0.15(3) 0.12(3) -0.06(2) -0.07(3) H7 0.31(6) 0.12(3) 0.09(2) 0.00(2) 0.11(3) -0.05(3) H8 0.069(11) 0.100(16) 0.060(11) 0.015(11) 0.019(9) -0.007(12) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C6 1.396(11) . ? C1 C2 1.409(11) . ? C1 C7 1.492(10) . ? C2 C3 1.373(11) . ? C2 O3 1.399(12) . ? C3 C4 1.401(13) . ? C3 H1 1.141(19) . ? C4 C5 1.373(13) . ? C4 H2 1.09(2) . ? C5 C6 1.359(12) . ? C5 H3 1.165(19) . ? C6 H4 1.07(3) . ? C7 O2 1.237(12) . ? C7 O1 1.303(12) . ? C8 O4 1.195(12) . ? C8 O3 1.355(12) . ? C8 C9 1.485(13) . ? C9 H5 1.08(3) . ? C9 H6 1.04(3) . ? C9 H7 1.07(5) . ? O1 H8 1.07(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 117.9(7) . . ? C6 C1 C7 118.0(7) . . ? C2 C1 C7 124.1(7) . . ? C3 C2 O3 117.5(7) . . ? C3 C2 C1 120.1(7) . . ? O3 C2 C1 122.2(7) . . ? C2 C3 C4 120.7(8) . . ? C2 C3 H1 117.6(14) . . ? C4 C3 H1 121.6(14) . . ? C5 C4 C3 118.8(8) . . ? C5 C4 H2 120.0(14) . . ? C3 C4 H2 121.2(14) . . ? C6 C5 C4 121.1(8) . . ? C6 C5 H3 120.7(12) . . ? C4 C5 H3 118.2(12) . . ? C5 C6 C1 121.4(8) . . ? C5 C6 H4 121.0(11) . . ? C1 C6 H4 117.6(11) . . ? O2 C7 O1 121.8(9) . . ? O2 C7 C1 119.6(7) . . ? O1 C7 C1 118.6(8) . . ? O4 C8 O3 122.3(9) . . ? O4 C8 C9 127.3(10) . . ? O3 C8 C9 110.4(8) . . ? C8 C9 H5 108.5(17) . . ? C8 C9 H6 114(2) . . ? H5 C9 H6 113(3) . . ? C8 C9 H7 111(2) . . ? H5 C9 H7 111(3) . . ? H6 C9 H7 98(4) . . ? C7 O1 H8 110.9(13) . . ? C8 O3 C2 115.7(7) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.06(3) 1.54(3) 2.596(15) 175.4(18) 3_575 _refine_diff_density_max 0.097 _refine_diff_density_min -0.073 _refine_diff_density_rms 0.020 data_Aspirin_60K _database_code_CSD 195139 _chemical_name_systematic ; 2-(acetoyloxy)benzoic acid ; _chemical_name_common Aspirin _chemical_formula_sum 'C9 H8 O4' _chemical_formula_weight 180.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_length_neutron _atom_type_scat_source 'C' 'C' 6.646 ; International Tables Vol C Table 4.4.4.1 ; 'H' 'H' -3.739 ; International Tables Vol C Table 4.4.4.1 ; 'O' 'O' 5.803 ; International Tables Vol C Table 4.4.4.1 ; _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P21/c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 11.204(3) _cell_length_b 6.5440(10) _cell_length_c 11.223(3) _cell_angle_alpha 90.00 _cell_angle_beta 95.95(2) _cell_angle_gamma 90.00 _cell_volume 818.4(3) _cell_formula_units_Z 4 _cell_measurement_temperature 60(1) _cell_measurement_reflns_used 25 _cell_measurement_theta_min ? _cell_measurement_theta_min ? _exptl_crystal_description 'irregular prism' _exptl_crystal_colour colourless _exptl_crystal_size_max 2.0 _exptl_crystal_size_mid 2.0 _exptl_crystal_size_min 1.5 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.461 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 21.26 _exptl_absorpt_coefficient_mu '1.550, at 1 Angstrom' _exptl_absorpt_correction_type empirical _exptl_absorpt_correction_T_min 0.59 _exptl_absorpt_correction_T_max 0.82 _exptl_absorpt_process_details ; The linear absorption coefficient is wavelength dependent and it is calculated as: mu = 0.80 + 0.75 * lambda [cm^-1] ; _exptl_special_details ; For peak integration a local UB matrix refined for each frame, using approximately 25 reflections. Hence _cell_measurement_reflns_used 25 For final cell dimensions an average of all local cells was performed and estimated standard uncertainties were obtained from the spread of the local observations Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. Instead, we can give values of #_cell_measurement_sin(theta)/lambda_min 0.18 #_cell_measurement_sin(theta)/lambda_max 0.91 The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.5-5.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7-2.5 Angstroms. The data collection procedures on the SXD instrument used for the single crystal neutron data collection are most recently summarised in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207-217. ; _diffrn_ambient_temperature 60(1) _diffrn_radiation_wavelength 0.5-5.0 _diffrn_radiation_type neutron _diffrn_radiation_source 'ISIS spallation source' _diffrn_radiation_monochromator none _diffrn_measurement_device SXD _diffrn_measurement_method 'time-of-flight LAUE diffraction' _diffrn_reflns_number 4456 _diffrn_reflns_av_R_equivalents 0.059 _diffrn_reflns_av_sigmaI/netI 0.0944 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 28 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 28 _diffrn_reflns_theta_min ? _diffrn_reflns_theta_max ? _reflns_number_total 2155 _reflns_number_gt 2155 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'ORTEP (Johnson, 1994)' _computing_publication_material ? _refine_special_details ; The variable wavelength nature of the data collection procedure means that sensible values of #_diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given It is also difficult to estimate realistic values of maximum sin(theta)/lambda values for two reasons: (i) Different sin(theta)/lambda ranges are accessed in different parts of the detectors (ii) The nature of the data collection occasionally allows some reflections at very high sin(theta)/lambda to be observed even when no real attempt has been made to measure data in this region. However, we can attempt to estimate the sin(theta)/lambda limits as follows: #_diffrn_reflns_sin(theta)/lambda_min 0.01 #_diffrn_reflns_sin(theta)/lambda_max 1.00 Note also that reflections for which the standard profile fitting integration procedure fails are excluded from the data set, thus resulting in a high elimination rate of weak or "unobserved" peaks from the final data set. The extinction coefficient reported in _refine_ls_extinction_coef is in this case the refined value of the mosaic spread in units of 10^-4 rad^-1 The reference for the extinction method used is: Becker, P. & Coppens, P. (1974). Acta Cryst. A30, 129-148. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0757P)^2^+0.4766P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method 'Becker-Coppens Lorentzian model' _refine_ls_extinction_coef 0.061 _refine_ls_number_reflns 2155 _refine_ls_number_parameters 190 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0820 _refine_ls_R_factor_gt 0.0820 _refine_ls_wR_factor_ref 0.1949 _refine_ls_wR_factor_gt 0.1949 _refine_ls_goodness_of_fit_ref 1.154 _refine_ls_restrained_S_all 1.154 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.1540(2) 0.5590(4) 0.0667(2) 0.0058(4) Uani 1 d . . . C2 C 0.2478(2) 0.4799(4) 0.0074(2) 0.0055(4) Uani 1 d . . . C3 C 0.3006(3) 0.2939(4) 0.0403(3) 0.0084(4) Uani 1 d . . . C4 C 0.2610(3) 0.1832(4) 0.1345(3) 0.0091(4) Uani 1 d . . . C5 C 0.1683(3) 0.2590(4) 0.1957(3) 0.0085(4) Uani 1 d . . . C6 C 0.1152(2) 0.4448(4) 0.1609(3) 0.0067(4) Uani 1 d . . . C7 C 0.0898(2) 0.7545(4) 0.0372(2) 0.0059(4) Uani 1 d . . . C8 C 0.3674(2) 0.7369(4) -0.0632(2) 0.0068(4) Uani 1 d . . . C9 C 0.3994(3) 0.8406(5) -0.1737(3) 0.0104(5) Uani 1 d . . . O1 O 0.1239(3) 0.8578(5) -0.0532(3) 0.0082(5) Uani 1 d . . . O2 O 0.0100(3) 0.8129(5) 0.0957(3) 0.0092(5) Uani 1 d . . . O3 O 0.2892(3) 0.5804(5) -0.0896(3) 0.0066(4) Uani 1 d . . . O4 O 0.4043(3) 0.7811(5) 0.0381(3) 0.0107(5) Uani 1 d . . . H1 H 0.3724(7) 0.2394(12) -0.0090(8) 0.0255(15) Uani 1 d . . . H2 H 0.3027(8) 0.0389(10) 0.1618(8) 0.0255(15) Uani 1 d . . . H3 H 0.1377(7) 0.1749(12) 0.2703(7) 0.0226(13) Uani 1 d . . . H4 H 0.0419(7) 0.5040(11) 0.2078(7) 0.0207(12) Uani 1 d . . . H5 H 0.4619(10) 0.9645(16) -0.1481(9) 0.034(2) Uani 1 d . . . H6 H 0.3180(10) 0.895(2) -0.2246(12) 0.050(3) Uani 1 d . . . H7 H 0.4390(14) 0.7325(17) -0.2315(11) 0.047(3) Uani 1 d . . . H8 H 0.0728(7) 0.9854(10) -0.0668(7) 0.0185(11) Uani 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0062(9) 0.0054(8) 0.0058(9) 0.0009(7) 0.0013(7) 0.0017(7) C2 0.0053(9) 0.0055(7) 0.0057(9) -0.0012(7) 0.0002(7) 0.0007(7) C3 0.0085(10) 0.0074(9) 0.0095(10) 0.0003(8) 0.0016(8) 0.0036(8) C4 0.0102(11) 0.0050(8) 0.0123(11) 0.0020(7) 0.0021(9) 0.0006(7) C5 0.0085(9) 0.0075(8) 0.0096(9) 0.0020(8) 0.0017(8) -0.0003(8) C6 0.0063(9) 0.0062(8) 0.0079(10) 0.0009(7) 0.0021(8) 0.0007(8) C7 0.0075(9) 0.0050(8) 0.0054(8) 0.0007(7) 0.0017(7) 0.0017(8) C8 0.0059(9) 0.0077(8) 0.0071(8) -0.0003(7) 0.0018(7) -0.0008(7) C9 0.0095(11) 0.0156(11) 0.0064(9) 0.0023(8) 0.0015(8) -0.0043(9) O1 0.0078(11) 0.0071(10) 0.0103(12) 0.0029(9) 0.0038(9) 0.0024(8) O2 0.0103(12) 0.0094(10) 0.0086(11) 0.0024(9) 0.0042(9) 0.0041(9) O3 0.0060(10) 0.0080(10) 0.0058(10) 0.0003(8) 0.0005(8) -0.0008(8) O4 0.0124(13) 0.0130(12) 0.0063(10) -0.0012(9) -0.0009(9) -0.0051(10) H1 0.024(3) 0.022(3) 0.034(4) 0.005(3) 0.019(3) 0.010(3) H2 0.033(4) 0.013(2) 0.031(4) 0.005(2) 0.007(3) 0.009(2) H3 0.026(3) 0.021(3) 0.021(3) 0.006(2) 0.007(3) 0.001(2) H4 0.019(3) 0.019(2) 0.026(3) 0.003(2) 0.008(2) 0.002(2) H5 0.038(5) 0.036(4) 0.029(4) 0.002(3) 0.005(3) -0.024(4) H6 0.027(4) 0.079(9) 0.042(6) 0.034(6) -0.012(4) -0.005(5) H7 0.076(9) 0.030(4) 0.041(6) -0.011(4) 0.036(6) -0.006(5) H8 0.022(3) 0.0110(19) 0.023(3) 0.0017(19) 0.004(2) 0.0061(19) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.399(4) . ? C1 C6 1.400(4) . ? C1 C7 1.489(4) . ? C2 C3 1.387(4) . ? C2 O3 1.392(4) . ? C3 C4 1.392(4) . ? C3 H1 1.083(7) . ? C4 C5 1.394(4) . ? C4 H2 1.084(7) . ? C5 C6 1.391(4) . ? C5 H3 1.086(8) . ? C6 H4 1.091(8) . ? C7 O2 1.224(4) . ? C7 O1 1.309(4) . ? C8 O4 1.204(4) . ? C8 O3 1.361(4) . ? C8 C9 1.490(4) . ? C9 H5 1.090(9) . ? C9 H6 1.084(11) . ? C9 H7 1.085(10) . ? O1 H8 1.015(7) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 118.0(2) . . ? C2 C1 C7 125.6(2) . . ? C6 C1 C7 116.5(2) . . ? C3 C2 O3 117.1(3) . . ? C3 C2 C1 121.2(3) . . ? O3 C2 C1 121.7(3) . . ? C2 C3 C4 119.9(3) . . ? C2 C3 H1 118.2(5) . . ? C4 C3 H1 121.9(5) . . ? C3 C4 C5 120.1(3) . . ? C3 C4 H2 120.4(5) . . ? C5 C4 H2 119.5(5) . . ? C6 C5 C4 119.4(3) . . ? C6 C5 H3 120.0(5) . . ? C4 C5 H3 120.6(5) . . ? C5 C6 C1 121.4(3) . . ? C5 C6 H4 119.7(5) . . ? C1 C6 H4 118.9(4) . . ? O2 C7 O1 122.9(3) . . ? O2 C7 C1 120.8(3) . . ? O1 C7 C1 116.3(3) . . ? O4 C8 O3 122.5(3) . . ? O4 C8 C9 126.0(3) . . ? O3 C8 C9 111.5(3) . . ? C8 C9 H5 108.9(6) . . ? C8 C9 H6 109.0(7) . . ? H5 C9 H6 112.2(11) . . ? C8 C9 H7 110.4(7) . . ? H5 C9 H7 110.6(10) . . ? H6 C9 H7 105.8(13) . . ? C7 O1 H8 109.7(5) . . ? C8 O3 C2 116.4(3) . . ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O1 H8 O2 1.015(7) 1.629(7) 2.643(5) 177.1(7) 3_575 _refine_diff_density_max 0.237 _refine_diff_density_min -0.224 _refine_diff_density_rms 0.052