Electronic supplementary information(ESI)

Coexistence of antiferromagnetically coupled dimer and isolated paramagnetic spin in 4-azaindol-2-yl nitronyl nitroxide crystal

Hideaki Nagashima, Noriko Hashimoto, Hidenari Inoue, and Naoki Yoshioka*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama 223-8522, Japan

Table S1Atomic spin population of 2.

- **Table S2**Final position parameters of 2.
- Fig. S1 UB3LYP/cc-pVDZ optimized structure of 2 and its atomic numbering.

Fig. S2 Selected dimeric structures to calculate *J* values.

Table S1	Atomic	snin	population	of $2^{a,b}$
1 abic 51	Atomic	spin	population	01 4

O(1)	0.368320	H(21)	-0.001492
O(2)	0.306082	H(22)	0.000223
N(3)	0.271512	H(23)	-0.000788
N(4)	0.284650	H(24)	-0.000630
N(5)	-0.002866	H(25)	-0.000467
N(6)	-0.015021	H(26)	0.000193
C(7)	-0.182771	H(27)	-0.000798
C(8)	-0.012303	H(28)	-0.000451
C(9)	-0.010888	H(29)	-0.000683
C(10)	0.018924	H(30)	0.000144
C(11)	0.001210	H(31)	-0.000784
C(12)	0.001538	H(32)	-0.000674
C(13)	0.019350	H(33)	0.000300
C(14)	0.041947	H(34)	0.003038
C(15)	-0.071726	H(35)	-0.000119
C(16)	-0.017701	H(36)	0.001394
C(17)	0.014302	H(37)	-0.000289
C(18)	0.004165		
C(19)	-0.024350		
C(20)	0.007507		

^a UB3LYP/EPR-II//UB3LYP/cc-pVDZ ^b see Fig. S1 for atomic numbering

atom	x	у	Ζ	$U_{\rm iso}$		
01	0.98722(9)	-0.1229(1)	0.1606(1)	0.0673(5)		
02	0.77211(8)	0.0332(1)	0.13737(9)	0.0604(4)		
N3	0.92065(9)	-0.1058(1)	0.15604(9)	0.0454(4)		
N4	0.81801(9)	-0.0317(1)	0.14415(8)	0.0424(3)		
N5	0.89189(9)	0.1411(1)	0.15262(8)	0.0408(3)		
N6	1.0735(1)	0.2214(1)	0.17528(9)	0.0516(4)		
C7	0.8905(1)	-0.0233(1)	0.15193(9)	0.0389(4)		
C8	0.8622(1)	-0.1788(1)	0.1445(1)	0.0470(4)		
C9	0.7994(1)	-0.1260(1)	0.1551(1)	0.0454(4)		
C10	0.8997(2)	-0.2548(2)	0.1951(2)	0.0665(7)		
C11	0.8360(2)	-0.2118(2)	0.0712(2)	0.0715(7)		
C12	0.8090(2)	-0.1287(2)	0.2282(1)	0.0666(6)		
C13	0.7166(1)	-0.1474(2)	0.1041(2)	0.0649(6)		
C14	0.9286(1)	0.0607(1)	0.15518(9)	0.0389(4)		
C15	1.0019(1)	0.0767(1)	0.1628(1)	0.0437(4)		
C16	0.9417(1)	0.2097(1)	0.15966(9)	0.0401(4)		
C17	1.0110(1)	0.1717(1)	0.16622(9)	0.0409(4)		
C18	1.0638(1)	0.3101(2)	0.1763(1)	0.0561(5)		
C19	0.9960(1)	0.3524(2)	0.1681(1)	0.0538(5)		
C20	0.9326(1)	0.3027(1)	0.1598(1)	0.0478(4)		
O21	0.5531(1)	0.0552(2)	0.1333(1)	0.0970(7)		
O22	0.77027(7)	0.22556(9)	0.18392(7)	0.0491(3)		
N23	0.5993(1)	0.1113(1)	0.1276(1)	0.0577(5)		
N24	0.70168(8)	0.1931(1)	0.15187(8)	0.0394(3)		
N25	0.7792(1)	0.1207(1)	0.29220(8)	0.0466(4)		
N26	0.7277(2)	-0.0178(1)	0.3974(1)	0.0731(6)		
C27	0.6702(1)	0.1320(1)	0.1768(1)	0.0427(4)		
C28	0.5833(1)	0.1514(2)	0.0593(1)	0.0535(5)		
C29	0.6454(1)	0.2270(1)	0.0823(1)	0.0443(4)		
C30	0.5002(2)	0.1845(3)	0.0229(2)	0.0820(9)		
C31	0.5969(2)	0.0769(2)	0.0180(2)	0.0715(7)		
C32	0.6169(2)	0.3176(2)	0.0946(1)	0.0573(5)		
C33	0.6867(2)	0.2385(2)	0.0381(1)	0.0590(6)		
C34	0.7059(1)	0.0953(1)	0.2453(1)	0.0444(4)		
C35	0.6752(2)	0.0379(1)	0.2759(1)	0.0535(5)		
C36	0.7960(1)	0.0799(1)	0.3537(1)	0.0504(5)		
C37	0.7315(2)	0.0286(1)	0.3451(1)	0.0549(5)		
C38	0.7909(2)	-0.0117(2)	0.4574(2)	0.0800(9)		
C39	0.8571(2)	0.0362(2)	0.4690(1)	0.0749(8)		
C40	0.8612(2)	0.0839(2)	0.4169(1)	0.0637(6)		

Table S2Final position parameters of 2

Fig. S1 UB3LYP/cc-pVDZ optimized structure of **2** and its atomic numbering.

H. Nagashima, et al.

Fig. S2 Selected dimeric structures to calculate *J* values.

H. Nagashima, et al.