Complexity of Synthetic Routes: Linear, Convergent and Reflexive Syntheses. (Supplementary Information)

Steven H. Bertz

Complexity Study Center, Mendham, NJ 07945

This submission was created using the RSC Article Template

Table III Selected complexity indices for routes 1-3.

compound ^a	N_{T}	$\Delta N_{\rm T}$	$N_{\rm S}$	$\Delta N_{\rm S}$	T_{T}	ΔT_{T}	η	Δη	С(η,ε)	$\Delta C(\eta, \varepsilon)$	S	ΔS
route 1												
1	9	_	4	_	5	_	3	_	4.8	_	4	_
H_2	0	_	0	_	0	_	0	_	0.0	_	0	_
4	261	252	25	21	105	100	15	12	69.4	64.6	10	6
3	37	-224	7	-18	36	-69	6	-9	15.5	-53.9	4	-6
route 2												
1	9	_	4	_	5		3		4.8	_	4	
H_2	0	_	0	_	0	_	0	_	0.0	_	0	_
5	26	17	8	4	17	12	6	3	21.0	16.2	4	0
6	5	-4	3	-1	4	-1	1	-2	0.0	-4.8	2	-2
7	69	38	17	9	51	30	9	2	45.1	24.1	6	0
3	37	-32	7	-10	36	-15	6	-3	15.5	-29.6	4	-2
route 3												
1	9	_	4	_	5		3		4.8	_	4	
2	9	_	5	_	5		3		6.8	_	5	
H_2	0	_	0	_	0		0		0.0	_	0	
IPA^b	0	_	0	_	0		0		0.0	_	0	
HBr^{c}	1	_	1	_	1		0	_	0.0	_	1	
R ₃ P:	19	_	9	_	11		6	_	24.8	_	1	_
MeLi	3	_	3	_	3	_	0	_	0.0	_	1	_
8	26	8	14	6	17	7	6	0	30.3	18.7	5	-4
9	16	-10	10	-4	13	-4	4	-2	17.2	-13.1	3	-2
10	16	0	10	0	13	0	4	0	17.2	0.0	3	0
11	62	27	27	8	52	28	10	0	65.1	23.1	4	0
12^d	141	79	42	15	83	31	15	5	103.1	38.0	5	2
13 ^e	95	-36	19	-23	48	-24	11	0	58.1	-22.3	6	0
14	133	38	23	4	73	25	12	1	66.0	7.9	8	2
3	37	-96	7	-16	36	-37	6	-6	15.5	-50.5	4	-4

^{*a*} Note that only intermediates are included in C_x , but starting materials and reagents are also included in the calculation of ΔC_m . ^{*b*}Isopropyl alcohol, used as a H-source in the reduction of $\mathbf{8}$;³⁶ therefore, we set C = 0. ^{*c*}The complexities of HBr and H₂O are equal and cancel out. ^{*d*}By-products are methane $(N_T = N_S = T_T = 1, \eta = C(\eta) = S = 0)$ and LiBr $(N_T = N_S = T_T = S = 2, \eta = C(\eta) = 0)$. The latter is ionic, and does not have a covalent Li-Br bond. ^{*e*}By-product is R₃PO $(N_T = 36, N_S = 14, T_T = 28, \eta = 10, C(\eta, \varepsilon) = 53.0, S = 4)$.