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Expository clauses for Introduction

The conceptions of structure augmentation, decoration and other, mainly topological transformations of the structure are repeatedly used for description of structures itself and the description of the relations between them [M.O’Keeffe, M. Edaoudi, H.Li, T. Reineke, O.M. Yaghi, J. of Solid State Chem., 152 (2000), 3]. Mostly, such uses can be formulated as static scheme. In the present contribution, a dynamic scheme is used: the secondary molecular building block (the prototypal H-bonded motif) is augmented in general way, and the augmented class is further exploited – thus a non fixed design scheme is used. 

In the main text, the H-bonded topologies, which is resulted by hydroxyl-augmentation, introduced as “…it assumes existence of the classes of binary compounds based upon the complementary combination of the H-bonding donating/accepting sites: {[--N–NH--]}({[--OH--]}({[--N–NH--]n[--OH--]m}”. Here, the ( sign is used in the sense of free combination within unique part of the motif, but formally the sign in that context can be used as a topology product (but not as set product, where [--N–NH--]2[--OH--]2 and [--N–NH--] [--OH--] [--N–NH--] [--OH--] are not distinguished). The sigh of topology product may be consistent in case of trivial choice of open parts ([--N–NH--] and [--OH--] are a minimal open parts), but the pertinence of such artificial interpretation is questionable. In any cases, the shortened {[--N–NH--]n[--OH--]m} expression means [--N–NH--]n1[--OH--]m1[--N–NH--]n2[--OH--]m2… n1,m1,n2, m2,…(N 

Experimental

The synthesis of 3,3´,5,5´-tetramethyl-4,4´-bipyrazolyl (Me4bpz) was carried on according to the next scheme [W.L. Mosby, J.Chem.Soc., 1957, 3997]:
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Typical synthesis of pyrazole/phenol co-crystal: 

Components in 1:1 molar ratio (usual weights were 50-100 mg) were dissolved in 5-10 ml of MeOH and slowly evaporated in a period of 10-15 days until crystallization of app. 1/3-1/2 of total amount of dissolved matter. This afforded high quality crystals of the molecular adducts (i.e. 3,5-dimethylpyrazole-phenol, 3,3´,5,5´-tetramethyl-4,4´-bipyrazolyl-hydroquinone, etc) of homogeneous morphology. Structures of six such compounds was determined and presented in the contribution. Presence of water of crystallization in 2Me4bpz · 1,3,5-C6H3(OH)3 · H2O (6) was conditioned by contact of the solution with air.

Bipyrazole and resorcinol do not form adducts under these conditions, but readily co-crystallize from chloroform as 1:1 complex Me4bpz· (m-C6H4(OH)2) 5.

We note that 3,5-dimethylpyrazole does not form co-crystals with resorcinol and floroglucine under crystallization from alcohols, chloroform, dichloromethane, acetonitrile and mixtures of the solvents. 

Crystallography 

X-ray diffraction data for 1 were collected using Stoe STADI-4 diffractometer( psi-scan based semi-empirical absorption correction was applied. The data for 2-6 were collected using SMART CCD Siemens diffractometer, data frames were integrated using SAINT and adsorption correction was applied (SADABS) in all cases. The structures were solved by direct methods and refined by full-matrix least-squares techniques in the anisotropic approximation using SHELX-97

Refinement

The refinements of all structures (1-6) were standard (SHELX-97 [G.M. Sheldrick, SHELXL97, University of Göttingen, Germany, 1997]): all nonhydrogen atoms refined anisotropically, no restraints were used. The hydrogen atoms were mainly constrained except those involved in hydrogen bonds – the data quality was enough to refine them reasonably, except structure of 3, where the hydrogen atoms were idealized and their equal delocalisation over two positions was accounted as best simple and persistent model being in accordance with Fourier difference synthesis. Other aromatic hydrogen atoms were constrained in ideal geometry and refined in riding model with Uiso equal of 1.2 Ueq of bearing carbon atom. Hydrogen atoms of methyl groups were processed with different modifications of ideal-geometry riding model (Uiso equal of 1.5 Ueq). In all structures except of 5, the rotating group model was used. Common feature of all structures is the complete circular disorder of methyl hydrogens that is clearly seen from circular difference electron density syntheses. Account of the equal disorder as staggered methyl group constraint effects in appreciable decreasing of the final R-factor, especially in structures of 1,2,4, numerically app. 10%. Finally, the disordered methyl group model was kept only in cases of 1,2 because the quantity of methyl groups equal two in this structures against eight in case of 4( the last implies “disorder distribution (or diffusion)” in structure with relatively high R and the correctness of such model seems disputable.

Atom numbering schemes and geometry of hydrogen bonding

Only the atom numbering schemes and hydrogen bond length and statistics are given here. Detailed crystallographic information is given in the CIF file.

Me2pz · PhOH (1):
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1:

	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	N1-H1...O1(x, -y+1/2, z-1/2)
	0.91(3)
	2.01(3)
	2.916(3)
	173(3)

	O1-H2...N2
	0.93(3)
	1.78(3)
	2.700(3)
	170(2)


Me2pz · p-C6H4(OH)2 (2)
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	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	N1-H1...O2(-x, y-1/2, -z+1/2)
	0.896(15)
	2.029(16)
	2.8936(14)
	161.8(14)

	O2-H3...O1(x+1/2, y, -z+1/2)
	0.908(19)
	1.79(2)
	2.6973(14)
	178.7(17)

	O1-H2...N2
	0.95(2)
	1.73(2)
	2.6742(14)
	171.1(18)


Me4bpz · 2PhOH (3)
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	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	O1-H11...O2
	1.05
	1.60
	2.647(3)
	173.4

	O2-H21...O1
	0.79
	1.94
	2.647(3)
	148.8

	O1-H12...N2(x-1/2, -y+1/2, z+1/2)
	1.10
	1.88
	2.887(3)
	150.4

	N2-H1B...O1(x+1/2, -y+1/2, z-1/2)
	0.86
	2.04
	2.887(3)
	169.0

	O2-H22...N4
	0.98
	1.72
	2.681(4)
	166.1

	N4-H2B...O2
	0.83
	1.86
	2.681(4)
	169.9

	N1-H1A...N3(x, y, z-1)
	0.90
	1.96
	2.825(2)
	162.2

	N3-H2A...N1(x, y, z+1)
	0.88
	1.97
	2.825(2)
	166.9


Me4bpz · p-C6H4(OH)2 (4)
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	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	N1-H1...O3
	0.91(3)
	1.89(3)
	2.792(2)
	170(2)

	N3-H2...O1
	1.03(2)
	1.91(2)
	2.858(2)
	152(2)

	N6-H3...N4
	0.86(3)
	2.02(3)
	2.864(2)
	164(2)

	N8-H4...N2(x+1, y-1, z)
	0.91(2)
	2.04(2)
	2.904(2)
	158(2)

	O1-H5...O2(x-1, y, z)
	0.85(3)
	1.92(3)
	2.763(3)
	168(3)

	O2-H6...N7(-x+2, -y, -z)
	1.12(4)
	1.59(4)
	2.674(2)
	160(3)

	O3-H7...O4(-x, -y+1, -z+1)
	0.98(3)
	1.65(3)
	2.624(2)
	171(3)

	O4-H8...N5
	1.00(3)
	1.67(3)
	2.638(2)
	162(3)


Me4bpz · m-C6H4(OH)2 (5)
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	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	N3-H2...O1(-x+1/2, y-1/2, z)
	0.87(3)
	2.18(3)
	2.943(2)
	146(2)

	O1-H3...N1(-x+1/2, -y+1, z+1/2)
	0.90(3)
	1.86(3)
	2.736(2)
	163(2)

	O2-H4...N4
	0.99(4)
	1.75(4)
	2.736(3)
	175(3)


2Me4bpz · 1,3,5-C6H3(OH)3 · H2O(6)
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	D–H…A
	d(D-H), Å
	d(H---A), Å
	d(D---A), Å
	( DHA, ˚

	
	
	
	
	

	O3-H6...O2(-x+1/2, -y, z+1/2)
	0.84(2)
	1.88(2)
	2.639(2)
	149(2)

	O1-H5...N2(x-1/4, -y+1/4, z-5/4)
	0.97(3)
	1.74(3)
	2.673(2)
	160(3)

	N1-H1...N3(x, y, z+1)
	0.95(3)
	1.94(3)
	2.874(3)
	166(2)

	O2-H7...N5(x, y, z-1)
	0.88(4)
	1.79(4)
	2.653(2)
	165(3)

	N4-H2...O3
	0.97(3)
	1.89(3)
	2.853(2)
	171(3)

	N6-H3...N7(x, y, z+1)
	0.87(3)
	1.98(3)
	2.807(3)
	159(2)

	O4-H8...O1(x-1/4, -y+1/4, z-1/4)
	0.96(5)
	1.95(5)
	2.873(3)
	162(4)

	N8-H4...O4
	0.77(4)
	2.09(4)
	2.855(3)
	172(3)


The hydrogen bond lengths are distributed in the range of [2.624Å, 2.943Å]. In each structure, there is a tendency to bimodal distribution of separations (maxima correspond to OH---N and NH---O types of interaction) with the difference of app. 0.2 Å. The summary histogram is shown below:
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