Highly Reactive Oligosilyltriflates -
 Synthesis, Structure and Rearrangement

C. Krempner, U. Jäger-Fiedler, C. Mamat, A. Spannenberg, K. Weichert

Supporting Information

Experimental

The manipulation of air and moisture sensitive compounds involved standard Schlenk line and dry box techniques. All solvents were freshly distilled under argon from alkali metals and also TfOH $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\right)$ was freshly distilled prior to use. Benzene- D_{6} was dried over activated molecular sieves and stored in the glove box.

General procedure for the synthesis of the phenyloligosilanes $\mathbf{1 a - d}$ and 8 :

In a Schlenk type flask with magnetic stirrer were placed rapidly phenyltris(trimethylsilyl)silane ($10 \mathrm{~g}, 30.8 \mathrm{mmol}$) and $\mathrm{Bu}^{\mathrm{t}} \mathrm{OK}(3.6 \mathrm{~g}, 32 \mathrm{mmol})$. The flask was evaporated and refilled with argon for three times, THF (100 mL) was added and the yelloworange solution immediately formed was stirred overnight. Then, the solvent and other volatiles were removed under vacuum and the phenylbis(trimethylsilyl)silylpotassium x 3 THF obtained as a dark orange solid was suspended in pentane and cooled to $-78^{\circ} \mathrm{C}$. To this stirred suspension the related electrophile was added in one portion. Stirring was continued for 1 hour, and the mixture was allowed to warm up to room temperature within 2 hours. After addition of $40 \mathrm{ml}(0.1 \mathrm{M})$ of hydrochloric acid, the organic phase was separated, dried with MgSO_{4}, and the solvent was evaporated. The raw products were purified as described below.

2,4-Diphenyl-1,1,1,3,3,5,5,5-octamethyl-2,4-bis(trimethylsilyl)pentasilane (1b)

$\mathrm{Me}_{2} \mathrm{SiCl}_{2}(1.9 \mathrm{ml}, 15.7 \mathrm{mmol})$. The solid residue was re-crystallized from acetone to give 2a ($6.64 \mathrm{~g}, 77 \%$); mp 126-128 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}$): $\delta 0.20$ (s, $\mathrm{SiMe}_{3}, 36 \mathrm{H}$), 7.11-7.57 $(2 \mathrm{~m}, \mathrm{SiPh}, 10 \mathrm{H}) .0 .70\left(\mathrm{~s}, \mathrm{SiMe}_{2}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 63 \mathrm{MHz}\right): \delta 1.8\left(\mathrm{SiMe}_{3}\right), 1.9\left(\mathrm{SiMe}_{2}\right)$, 128.0, 128.2, 136.1, 137.3 (SiPh); ${ }^{29} \mathrm{Si}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 79.5 \mathrm{MHz}\right): \delta-12.3\left(\mathrm{SiMe}_{3}\right),-33.2$ $\left(\mathrm{SiMe}_{2}\right),-70.5(\mathrm{SiPh}) .-\mathrm{MS}:\left(70 \mathrm{eV}, \mathrm{m} / \mathrm{z}\right.$ in \%): $560(1)\left[\mathrm{M}^{+}\right], 545$ (4) [$\left.\mathrm{M}^{+}-\mathrm{Me}\right], 487$ (3) [$\mathrm{M}^{+}-$ SiMe_{3}]. - Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{Si}_{7}$ (561.29): C, 55.64 ; H, 9.34. Found: C, 54.60; H, 9.27.

2,4-Diphenyl-1,1,1,3,5,5,5-octamethyl-2,4-bis(trimethylsilyl)-3-germa-pentasilane (1c)

$\mathrm{Me}_{2} \mathrm{GeCl}_{2}$ ($2.73 \mathrm{~g}, 15.7 \mathrm{mmol}$). Raw $\mathbf{1 c}$ was suspended in cold ethanol, filtered off and dried under vacuum, yield $6.63 \mathrm{~g}(71 \%)$; mp $125^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta 0.21\left(2 \mathrm{~s}, \mathrm{SiMe}_{3}\right.$, $2 \times 18 \mathrm{H}), 0.82\left(\mathrm{~s}, \mathrm{GeMe}_{2}, 6 \mathrm{H}\right), 7.11-7.14,7.53-7.57(2 \mathrm{~m}, \mathrm{SiPh}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 63$ $\mathrm{MHz}): \delta 1.6\left(\mathrm{SiMe}_{3}\right), 1.7\left(\mathrm{GeMe}_{2}\right), 127.9,128.3,136.5,137.1(\mathrm{SiPh}) ;{ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 79.5\right.$ $\mathrm{MHz}): \delta-12.1\left(\mathrm{SiMe}_{3}\right),-62.8(\mathrm{SiPh})$. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{GeSi}_{6}$ (605.80): C, 51.55; H, 8.65. Found: C, 51.15; H, 8.58.

1c

2,5-Diphenyl-1,1,1,3,3,4,4,6,6,6-decamethyl-2,5-bis(trimethylsilyl)hexasilane (1d)

$\mathrm{ClMe}_{2} \mathrm{Si}^{-\mathrm{SiMe}_{2} \mathrm{Cl}}(2.91 \mathrm{ml}, 15.6 \mathrm{mmol})$. The solid residue was re-crystallized from acetone to give $7.71 \mathrm{~g}(81 \%)$ of $\mathbf{1 d} ; \mathrm{mp} 155-162^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta 0.31\left(\mathrm{~s}, \mathrm{SiMe}_{3}, 36 \mathrm{H}\right)$,

Supplementary Material for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2005
0.35 (s, $\mathrm{SiMe}_{2}, 12 \mathrm{H}$), 7.11-7.20, 7.61-7.64 (2m, SiPh, 10 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 63 \mathrm{MHz}\right): \delta$ $2.0\left(\mathrm{SiMe}_{3}\right),-0.6\left(\mathrm{SiMe}_{2}\right), 128.1,128.3,136.1,137.1(\mathrm{SiPh}) ;{ }^{29} \mathrm{Si} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 79.5 \mathrm{MHz}\right): \delta-$ $72.0(\mathrm{SiPh}),-34.2\left(\mathrm{SiMe}_{2}\right),-12.5\left(\mathrm{SiMe}_{3}\right) .-\mathrm{MS}:\left(70 \mathrm{eV}, \mathrm{m} / \mathrm{z}\right.$ in \%): $618(3)\left[\mathrm{M}^{+}\right], 603(5)\left[\mathrm{M}^{+}-\right.$ $\mathrm{Me}], 367$ (100) $\left[\mathrm{M}^{+}-\mathrm{SiPh}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$. - Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{Si}_{8}$ (619.45): C, 54.29; H, 9.44. Found: C, 53.26; H, 9.15.

2,6-Diphenyl-1,1,1,3,3,4,5,5,7,7,7-undecamethyl-2,6-bis(trimethylsilyl)-4-[1,1,3,3,3-pentamethyl-2-phenyl-2-trimethylsilyl-trisilanyl]heptasilane (8)

$\left(\mathrm{ClMe}_{2} \mathrm{Si}_{3}\right)_{3} \mathrm{SiMe}(3.23 \mathrm{~g}, 10 \mathrm{mmol})$. The solid residue was re-crystallized from acetone to give $7.1 \mathrm{~g}(73 \%)$ of $\mathbf{8} ; \mathrm{mp} 180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}$): $\delta 0.31\left(\mathrm{~s}, \mathrm{SiMe}_{3}, 54 \mathrm{H}\right), 0.32(\mathrm{~s}$, $\mathrm{SiMe}_{2}, 18 \mathrm{H}$), 0.63 (s, Me, 3 H), 7.10-7.22, 7.59-7.74 (m, phenyl, 15 H), ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, 62.9 MHz): $\delta 2.0$ (SiMe), 2.1 (SiMe), 2.4 (SiMe), 128.4, 137.4 (arom. C-H); 136.5, 137.3 (arom. quart. C); ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 59.6 \mathrm{MHz}\right): \delta-68.5(\mathrm{SiPh}) ;-56.8(\mathrm{SiMe}) ;-29.9\left(\mathrm{SiMe}_{2}\right) ;-$ 12.0, -11.5 (SiMe_{3}). - MS (CI isobutane / FAB): $\mathrm{m} / \mathrm{z}(\%)=955(16)\left[\mathrm{M}^{+}-\mathrm{Me}\right] ; 897(11)\left[\mathrm{M}^{+}-\right.$ $\left.\mathrm{SiMe}_{3}\right] ; 719$ (100) $\left[\mathrm{M}^{+}-\mathrm{PhSi}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$. Anal. Calc. for $\mathrm{C}_{43} \mathrm{H}_{90} \mathrm{Si}_{13}$ (972.29): C, 53.12; H , 9.33. Found: C, 52.33; H, 9.19.

8

2,2,4,4-Tetramethyl-3,3,5,5-tetrakis(trimethylsilyl)-1-oxa-tetrasilacyclobutane (4)

Supplementary Material for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2005

$\mathrm{TfOH}(0.5 \mathrm{ml}, 5.7 \mathrm{mmol})$ was added at room temperature to a solution of oligosilane $\mathbf{1 d}$ (1.67 $\mathrm{g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and the mixture was stirred for 2 hrs . After addition of water $(30 \mathrm{ml})$ to the stirred solution the organic phase was separated, dried with MgSO_{4}, and the solvent was evaporated. The solid residue was re-crystallized from acetone to give $4(1.18 \mathrm{~g}$, 86%); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}$): $\delta 0.31,0.28\left(2 \mathrm{~s}, \mathrm{SiMe}_{3}, 2 \times 18 \mathrm{H}\right), 0.55,0.44\left(2 \mathrm{~s}, \mathrm{SiMe}_{2}, 2\right.$ $\times 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 63 \mathrm{MHz}\right): \delta 3.4\left(\mathrm{SiMe}_{3}\right)$, 6.6, $0.1\left(\mathrm{SiMe}_{2}\right) ;{ }^{29} \mathrm{Si}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 79.5$ MHz): $\delta-8.2,-15.5\left(\mathrm{SiMe}_{3}\right), 28.3\left(\mathrm{OSiMe}_{2}\right),-1.4\left(\mathrm{OSi}\left(\mathrm{SiMe}_{3}\right)_{2}\right)-23.7\left(\mathrm{SiMe}_{2}\right)$, -145.7 (quart. Si). - MS: (70eV, m/z in \%): $480(90)\left[\mathrm{M}^{+}\right], 465(20)\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 407(80)\left[\mathrm{M}^{+}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{48} \mathrm{OSi}_{8}$ (481.246): C, 39.93; H, 10.05. Found: C, 39.89; H, 9.86.

