\# Supplementary Material (ESI) for New Journal of Chemistry
 \# This journal is © The Royal Society of Chemistry and
 \# The Centre National de la Recherche Scientifique, 2005
 Synthesis and Photophysical Studies of Donor Acceptor Substituted Tetrahydropyrenes

S. Sumalekshmy and K. R. Gopidas*

Supplementary Information

The compounds $\mathbf{1}$ and $\mathbf{2}$ were prepared according to Schemes S1 and S2. The synthesis starts from tetrahydropyrene, which is prepared according to a literature procedure. ${ }^{1}$

Scheme S2
Synthesis of 4: The compound $\mathbf{5}$ is obtained by the nitration of $\mathbf{4}(2 \mathrm{gm}, 9.7 \mathrm{mmol})$ using concentrated nitric acid (35 mL). The mixture was stirred for 2 h . It was poured into crushed ice, the precipitate was filtered, washed with water, dried and purified by triturating with benzene to give $1.8 \mathrm{~g}(70 \%)$ of $\mathbf{5}, \mathrm{mp} 312-313{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$

\# Supplementary Material (ESI) for New Journal of Chemistry
\# This journal is © The Royal Society of Chemistry and
\# The Centre National de la Recherche Scientifique, 2005

MHz): $\delta 3.04$ (s, 8 H , benzylic), 8.02 (s, 4 H , aromatic). IR (KBr): 1600, 1522, 1336, $1103,912,741 \mathrm{~cm}^{-1}$.

Synthesis of 5: The compound $\mathbf{5}(250 \mathrm{mg}, 0.84 \mathrm{mmol})$ is partially reduced in a mixture (1:1) of methanol and THF using sodium hydrosulfide, prepared by the reaction between sodium ethoxide and hydrogen sulfide, $(0.8 \mathrm{~mL}, 114 \mathrm{mmol})$ under reflux for 2 h . The solvent was evaporated and the residue was extracted with dichloromethane. Dichloromethane was removed and the residue chromatographed over silica gel using a mixture (3:1) of chloroform and hexane to give $120 \mathrm{mg}(53 \%)$, of $\mathbf{6} \mathrm{mp} 166-167{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta 2.8-3.1$ (m, 8 H , benzylic), 6.42 ($\mathrm{s}, 2 \mathrm{H}$, aromatic), 7.9 (s, 2 H aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 28.06,28.15,112.38,120.12,121.20,134.53,137.74$, 138.28, 144.83, 147.69. IR (KBr): 3430, 3343, 2950, 2831, 1600, 1517, 1315, 1160, $1087,901,770 \mathrm{~cm}^{-1}$.

Synthesis of 1: For the synthesis of $\mathbf{1}$ a solution of $\mathbf{6}(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in THF was added to a suspension of sodium hydride ($90 \mathrm{mg}, 3.76 \mathrm{mmol}$) in THF followed by iodomethane ($266 \mathrm{mg}, 1.9 \mathrm{mmol}$). The reaction mixture was refluxed for 6 h and treated with crushed ice. The solvent was removed under reduced pressure and the residue was extracted with dichloromethane. The organic layer was separated, washed with water and the solvent removed under reduced pressure. The residue obtained was chromatographed over silica gel using a mixture (3:2) of chloroform and hexane to give $160 \mathrm{mg}(73 \%)$ of $\mathbf{1}$, mp 219-220 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.85-2.89(\mathrm{~m}, 8 \mathrm{H}$, benzylic), $3.03(\mathrm{~s}, 6$ $\left.\mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.46(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.9(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 28.29,28.56$, 40.24, 109.55, 118.06, 121.17, 134.2, 137.86, 138.03, 144.5, 151.09. IR (KBr): 2934,
\# Supplementary Material (ESI) for New Journal of Chemistry
\# This journal is © The Royal Society of Chemistry and
\# The Centre National de la Recherche Scientifique, 2005
$2831,1615,1506,1434,1310,1191,1082,881,725 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.45; H, 6.16; N, 9.5. Found: C, 73.28; H, 6.22; N, 9.08.

Synthesis of 2: The synthesis of 2 was carried out according to Scheme S2. The compound $6(100 \mathrm{mg}, 0.43 \mathrm{mmol})^{1}$ was hydrogenated in the presence of formaldehyde ($40 \mathrm{mg}, 1.29 \mathrm{mmol}$) in ethanol for 12 h using $\mathrm{Pd} / \mathrm{C}(10 \%)$ as catalyst. The reaction mixture was filtered, the solvent was removed under reduced pressure and the residue was chromatographed over silica gel using a mixture (1:9) of hexane and chloroform to give 3, ($70 \mathrm{mg}, 71 \%$), mp. $174-175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.5(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 2.89\left(\mathrm{~s}, 8 \mathrm{H}\right.$, benzylic), $3.0\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.46(\mathrm{~s}, 2 \mathrm{H} \mathrm{ArH}), 7.64(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.3,28.4,28.9,40.4,109.9,126.1,133.6,134.1,136.2$, 137.6, 150.7, 197.6. IR (KBr): 2925, 2365, 1672, 1590, 1480, 1430, 1340, 1280, 1190, 1150, 1080, $950,870 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 82.44 ; \mathrm{H}, 7.26 ; \mathrm{N}, 4.81$. Found: C, 82.5; H, 7.03; N, 5.17.

References:

1) M. D. Connor, D. S. Allen, M. D. Collard, L. C. Liotta, A. D. Schiraldi, J. Org. Chem., 1999, 64, 6888.
2) A. Musa, B. Sridharan, H. Lee, D. L. Mattern, J. Org. Chem., 1996, 61, 5481.
