Supplementary Material (ESI) for New Journal of Chemistry

This journal is © The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2004

Supporting Information

Table S1 Calculated energies of substituted ketones CH_3COX , their protonated forms and some reference compounds ^{*a*}

	Substituent	СН ₃ СОХ 8а-е	CH_3COH^+X	Rel. basici	ty kJ mol ⁻¹	$\Delta_{10}E$	$\Delta_{11}E$
	Х	<i>E</i> (DFT) a. u.	<i>E</i> (DFT) a. u.	$\Delta_9 E$	$\Delta_9 G^{\circ b}$	kJ mol ⁻¹	kJ mol ⁻¹
a	CH ₃	-193.2256836	-193.5491603	0	0	0	
b	CH ₂ F ^c	-292.4883451	-292.7948322	44.6		13.6	58.2
c	CF ₃	-491.0415959	-491.3302051 (Z) -491.3257692 (E)	91.5	90.1	51.1	142.6
d	CN	-246.1474231	-246.4312621 (Z) -246.4295083 (E)	104.1		45.4	149.5
e	NO ₂	-358.4579626	-358.7329237 (Z) -358.7238207 (E)	127.4		34.8	162.2
	ОН	-229.1724354	-229.4837665 (E,Z)	31.9	29.3	-73.4	-41.5

Reference compounds

2-methylpropane	-158.5141761
1-fluoro-2-methylpropane ^d	-257.7820313
1,1,1-trifluoro-2-methylpropane	-456.3495341
2-methylpropanenitrile	-211.4532096
2-nitropropane	-323.7597095
2-propanol	-194.4329568

^{*a*} Calculated at the level B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p). ^{*b*} Experimental values obtained from the data of Ref 1. ^{*c*} Conformation *sp* on the C–C bond (F near to =O). ^{*d*} Conformation *sc* (F between H and CH₃).

Appendix Estimation of the resonance contribution to the acidity of acetic acid

This problem was discussed in detail previously and a solution was attempted^{9b} using eqn. (12). When the variable groups X in X–OH were not conjugated with the hydroxyl group, the experimental reaction enthalpies $\Delta_{12}H^{\circ}$ depended empirically on the inductive constants σ_{1} or better on a linear combination of σ_{1} and σ_{α} (the polarizability constant). When the group CH₃CO was introduced as substituent X, deviation from the correlation line is a measure of the resonance effect **R** on the acidity. The resonance effect in the acetate anion was estimated similarly.^{9b} The inductive contributions were obtained by subtracting from the total experimental effect. These values were related to methanol. Here they were readjusted to 2-propanol, eqn. (13), and are given in Table 2, first line.

We attempted now to estimate the resonance effect on the acidity from a model close to that used for the basicity. To this purpose, eqn. (14) was advanced with $X = CH_3$, CN, CF₃ and CH₂F. (With $X = NO_2$ no stable molecule could be obtained.) The DFT calculated energies of the alcohols CH₃CHX–OH and of their anions CH₃CHX–O⁻ are given in Table S2, columns 2 and 3, the isodesmic reaction energies $\Delta_{14}E$ of eqn. (14) in column 4.

Substituent	CH ₃ CHX–OH	CH ₃ CHX–O ⁻	Rel. acidity	$\Delta_{18}E$	$\Delta_{19}E$	$\sigma_{ m I}$
Х	E(DFT) a. u.	E(DFT) a. u.	$\Delta_{14}E \text{ kJ mol}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	
CH ₃	-194.4329568	-193.8222911	0	0	0	0
CH ₂ F ^b	-293.6986081	-293.1028522	-39.2	5.8	-33.4	0.10
CF ₃	-492.2636015	-491.6780098	-65.8	12.4	-53.5	0.16
CN	-247.3643777	-246.7870279	-87.5	20.0	-67.5	0.22
acetic acid	-229.1724354	-228.6086418	-123.1	-73.4	-196.5	0.26

Table S2 Calculated energies of substituted alcohols CH₃CHX–OH and of their deprotonated forms^{*a*}

^{*a*} Calculated at the level B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(2d,2p). ^{*b*} Conformation ap on the C–C bond (F opposite to OH).

The plot of $\Delta_{14}E$ vs the inductive constants σ_I is shown in Fig. S1. The values of σ_I for the complex groups $-CH(CH_3)CN$, $-CH(CH_3)CF_3$ and $-CH(CH_3)CH_2F$ were estimated from the standard values²⁸ for the groups CN, CF₃ and CH₂F, respectively, by multiplying by the fall-off factor of 0.46. They are listed in Table S2, last column.

Fig S1 Plot of the calculated relative acidities [eqn. (14)] of substituted alcohols CH₃CHX–OH vs. the inductive constant σ_{I} , the groups X are given at each point. The point \bullet belongs to acetic acid, the arrows show the assumed contribution of resonance **R** and of the inductive effect **I**.

Bisection into the effects in the anion and in the neutral acid was attempted by means of the isodesmic reactions of eqns (18) and (19).

$$CH_{3}-CH + CH_{3}-CH + CH + CH_{3}-CH +$$

The calculated reaction energies $\Delta_{18}E$ and $\Delta_{19}E$ are given in Table S2, columns 5 and 6, respectively. The plot of $\Delta_{19}E$ vs. is shown in Fig. S2.

Fig S2 Plot of the calculated stabilization energies of the anions of substituted alcohols CH_3CHX-O^- [isodesmic reaction of eqn. (19)] vs. the inductive constant σ_I , the groups X are denoted at each point. The point \bullet belongs to acetic acid, the arrows show the assumed contribution of resonance **R** and of the inductive effect **I**.

The resulting values \mathbf{R} and \mathbf{I} for the acidity are given in Table 2, second line. In our opinion they could be somewhat more reliable than the estimates of the line 1, based on a different model [eqn. (13)]. It is true that Figs S1 and S2 are based on a small number of points, on the other hand the correlations are close and the model is homogeneous.