### **#** Supplementary Material (ESI) for New Journal of Chemistry # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2005

#### **Supplementary materials**

| t                 | [Na <sub>2</sub> CO <sub>3</sub> ] <sup>a</sup> | [NaClO <sub>4</sub> ] <sup>a</sup> | р                   | Im                    | $\mathrm{pH}^\mathrm{b}$ | -log[H <sup>+</sup> ] <sup>c</sup> | $\log[CO_3^{2^-}]^d$ | log[Eu]                    |
|-------------------|-------------------------------------------------|------------------------------------|---------------------|-----------------------|--------------------------|------------------------------------|----------------------|----------------------------|
| /weeks            | $/mol l^{-1}$                                   | /mol $l^{-1}$                      | /l kg <sup>-1</sup> | /mol kg <sup>-1</sup> |                          |                                    |                      |                            |
| 10                | 2.00                                            | 0.00                               | 1.2039              | 7.22                  | 12.23                    | 11.50                              | 0.30                 | <b>-</b> 4.18 <sup>e</sup> |
| $14^{\mathrm{f}}$ | 1.00                                            | 0.00                               | 1.0554              | 3.17                  | 11.73                    | 11.51                              | 0.00                 | <b>-</b> 4.50 <sup>e</sup> |
| 10                | 1.00                                            | 1.00                               | 1.1670              | 4.67                  | 11.88                    | 11.34                              | 0.00                 | -4.71                      |
| 10                | 0.30                                            | 2.40                               | 1.1752              | 3.88                  | 11.58                    | 11.03                              | -0.53                | -5.45                      |
| 10                | 0.10                                            | 2.80 <sup>g</sup>                  | 1.0687              | 3.31                  | 11.24                    | 10.37                              | -1.03                | -5.84                      |
| 10                | 0.03                                            | 2.94                               | 1.1692              | 3.54                  | 11.05                    | 10.50                              | -1.55                | -6.05                      |
| 10                | 0.01                                            | 2.98                               | 1.1686              | 3.52                  | 10.81                    | 10.27                              | -2.05                | $-6.75^{e}$                |
| 10                | 0.30                                            | 0.40                               | 1.0437              | 1.36                  | 11.40                    | 11.12                              | -0.53                | -4.96                      |
| 10                | 0.10                                            | 0.80                               | 1.0508              | 1.16                  | 11.17                    | 10.81                              | -1.02                | -5.28                      |
| 10                | 0.01                                            | 0.98                               | 1.0508              | 1.06                  | 10.67                    | 10.35                              | -2.04                | -6.94                      |
| 10                | 0.30                                            | 0.00                               | 1.0082              | 0.91                  | 11.39                    | 11.25                              | -0.53                | -4.51                      |
| 10                | 0.03                                            | 0.00                               | 1.0025              | 0.09                  | 11.10                    | 10.62                              | -1.57                | -5.91                      |
| 16                | 2.00                                            | 0.00                               | 1.2039              | 7.22                  | 12.23                    | 11.44                              | 0.30                 | -4.19                      |
| $20^{\mathrm{f}}$ | 1.00                                            | 0.00                               | 1.0554              | 3.17                  | 11.73                    | 11.46                              | 0.00                 | $-4.55^{e}$                |
| 16                | 1.00                                            | 1.00                               | 1.1670              | 4.67                  | 11.88                    | 11.27                              | -0.01                | -4.74                      |
| 16                | 0.30                                            | 2.40                               | 1.1752              | 3.88                  | 11.58                    | 10.95                              | -0.53                | -5.49                      |
| 16                | 0.10                                            | 2.80 <sup>g</sup>                  | 1.0687              | 3.31                  | 11.24                    | 10.33                              | -1.04                | -5.89                      |
| 16                | 0.03                                            | 2.94                               | 1.1692              | 3.54                  | 11.05                    | 10.28                              | -1.57                | -6.10                      |
| 16                | 0.01                                            | 2.98                               | 1.1686              | 3.52                  | 10.81                    | 10.08                              | -2.07                | -6.63                      |
| 16                | 0.30                                            | 0.40                               | 1.0437              | 1.36                  | 11.40                    | 11.06                              | -0.53                | -5.10                      |
| 16                | 0.10                                            | 0.80                               | 1.0508              | 1.16                  | 11.17                    | 10.75                              | -1.02                | -5.35                      |
| 16                | 0.01                                            | 0.98                               | 1.0508              | 1.06                  | 10.67                    | 10.29                              | -2.05                | -6.67                      |
| 16                | 0.30                                            | 0.00                               | 1.0082              | 0.91                  | 11.39                    | 11.20                              | -0.53                | -4.60                      |
| 16                | 0.03                                            | 0.00                               | 1.0025              | 0.09                  | 11.10                    | 10.70                              | -1.56                | -5.92 <sup>e</sup>         |

Table S1 Solubility data and calculations for dissolution experiments of NaEu(CO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O(s) in Na<sub>2</sub>CO<sub>3</sub>-NaClO<sub>4</sub> solutions.

<sup>a</sup> Initial concentration.

<sup>b</sup> Calculated pH : pH = 0.5 ( $pK_w$  + log  $K_1$  + log[CO<sub>3</sub><sup>2-</sup>]), where  $K_w$  is the ionic product of water ( $pK_w^{\circ} = 14.00$ ,  $\Delta z^2 = 2$ ,  $\varepsilon_{\text{H}^+\text{CIO}_4^-} = 0.14 \text{ kg mol}^{-1}$ ;  $\varepsilon_{\text{Na}^+\text{OH}^-} = 0.04 \text{ kg mol}^{-1}$ ,  $\phi_{\text{NaCIO}_4} = -0.015_3$ ) and  $K_1$  the equilibrium constant for  $\text{CO}_3^{2-} + \text{H}^+ \Rightarrow \text{HCO}_3^- (pK_w^\circ = -10.329, \Delta z^2 = -4, \epsilon_{\text{Na}^+\text{HCO}_3^-} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^-} = 0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^-} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^-} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^-} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^{2-}} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^{2-}} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^{2-}} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^{2-}} = -0.14 \text{ kg mol}^{-1}, \epsilon_{\text{Na}^+\text{CO}_3^{2-}} = -0.03 \text{ kg mol}^{-1}, \epsilon_{\text{H}^+\text{CIO}_4^{2-}} = -0.03 \text$  $-0.08 \text{ kg mol}^{-1}$ ).<sup>4</sup>

<sup>c</sup> Errors in the response of the electrodes may occur for values higher than about 11 due to alkaline effect.

<sup>d</sup>  $[CO_3^{2-}] = ([Na^+] + [H^+] - K_w / [H^+]) / (2 + K_1 [H^+]) (K_w and K_1 are defined in footnote <sup>b</sup>).$ <sup>e</sup> The nature of the solid, NaEu(CO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O(s), was confirmed by XRD analysis.

<sup>f</sup> Initial solution in which NaEu( $CO_3$ )<sub>2</sub>·xH<sub>2</sub>O(s) precipitated.

<sup>g</sup> ClO<sub>4</sub><sup>-</sup> was replaced by Cl<sup>-</sup>.

# # Supplementary Material (ESI) for New Journal of Chemistry

## # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2005

| NaEu(CO <sub>3</sub> ) <sub>2</sub> ·xH <sub>2</sub> O |               | Altered NaEu(CO <sub>3</sub> ) <sub>2</sub> ·xH <sub>2</sub> O |               | NaEu(CO <sub>3</sub> ) <sub>2</sub> ·5H <sub>2</sub> O <sup>21</sup> |                 | NaEu(CO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O <sup>22</sup> |
|--------------------------------------------------------|---------------|----------------------------------------------------------------|---------------|----------------------------------------------------------------------|-----------------|----------------------------------------------------------------------|
| d /Å                                                   | Rel. int. (%) | d /Å                                                           | Rel. int. (%) | d /Å                                                                 | Rel. int. (%)   | d /Å                                                                 |
| 12.72                                                  | 100           | 12.89                                                          | 100           | 13.01                                                                | 60              | 12.0752                                                              |
| 6.43                                                   | 30            | 6.48                                                           | 30            | 6.49                                                                 | 30              | 6.265                                                                |
|                                                        |               | 5.68<br>5.11                                                   | 30<br>60      |                                                                      |                 |                                                                      |
|                                                        |               | 4.92                                                           | 10            |                                                                      |                 |                                                                      |
| 4.55                                                   | 20            | 4.57                                                           | 10            | 4.57                                                                 | 100             |                                                                      |
|                                                        |               | 4.49                                                           | <10           |                                                                      |                 |                                                                      |
| 4.31                                                   | 40            | 4.32                                                           | 20            | 4.31                                                                 | 70              | 4.221                                                                |
|                                                        |               | 3.80                                                           | 40            |                                                                      |                 |                                                                      |
|                                                        |               | 3.72                                                           | 10            |                                                                      |                 |                                                                      |
| 3.29                                                   | <10           | 3.28                                                           | 50            | 3.3                                                                  | 60              | 3.2466                                                               |
|                                                        |               |                                                                |               | 3.21                                                                 | 60              |                                                                      |
| 3.20                                                   | <10           | 2.1.6                                                          | 10            | 3.19                                                                 | 50              |                                                                      |
| 3.16                                                   | <10           | 3.16                                                           | 40            | 3.16                                                                 | 40              |                                                                      |
| 3.07                                                   | 10            | 3.07                                                           | <10           | 3.07                                                                 | 80              |                                                                      |
|                                                        |               | 2.99                                                           | <10           | 3.01                                                                 | 10              |                                                                      |
| 2.01                                                   | <10           | 2.02                                                           | <10           | 2.95                                                                 | 20              |                                                                      |
| 2.91                                                   | <10<br><10    | 2.92                                                           | <10           | 2.92                                                                 | 20              |                                                                      |
| 2.04                                                   | <10           | 2.80                                                           | <10<br>40     | 2.80                                                                 | 50              |                                                                      |
| 263                                                    | <10           | 2.75                                                           | 40            |                                                                      |                 |                                                                      |
| 2.05                                                   | 10            | 2.03                                                           | <10           |                                                                      |                 |                                                                      |
| 2.59                                                   | <10           | 2.00                                                           | 10            | 2 57                                                                 | <10             | 2 5631                                                               |
| 2.00                                                   | -10           | 2.37                                                           | 60            | 2.07                                                                 | .10             | 2.5051                                                               |
|                                                        |               | 2.33                                                           | 20            |                                                                      |                 |                                                                      |
|                                                        |               | $\frac{2.33}{2.28}$                                            | 10            | 2.28                                                                 | <10             |                                                                      |
| 2.26                                                   | <10           | 2.26                                                           | 10            | 2.25                                                                 | 10              |                                                                      |
| 2.16                                                   | <10           | 2.15                                                           | 10            | 2.16                                                                 | 20              | 2,1371                                                               |
| 2.08                                                   | <10           | 2.11                                                           | 30            | 2.08                                                                 | $\overline{30}$ |                                                                      |
|                                                        |               | 2.08                                                           | <10           | 2.05                                                                 | 30              |                                                                      |
|                                                        |               | 2.06                                                           | 30            |                                                                      |                 |                                                                      |
| 2.02                                                   | <10           | 2.03                                                           | <10           | 2.02                                                                 | <10             |                                                                      |
| 2.00                                                   | <10           |                                                                |               | 2.01                                                                 | 10              |                                                                      |

**Table S2** Bragg reflections of non-altered and altered  $NaEu(CO_3)_2 \cdot xH_2O(s)$ , in comparison with literature data.

### # Supplementary Material (ESI) for New Journal of Chemistry # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2005

**Fig. S1** XRD powder patterns for the solubility-controlling phase,  $NaEu(CO_3)_2 \cdot xH_2O(s)$ , analysed (a) immediately after filtration and (b) few days after, resulting in alteration of  $NaEu(CO_3)_2 \cdot xH_2O(s)$  to  $Eu_2(CO_3)_2 \cdot yH_2O(s)$  and  $Na_2CO_3(s)$ . Only a few peaks (noted with \*) could be assigned to  $Eu_2(CO_3)_2(s)$  from the comparison with oven dried  $Eu_2(CO_3)_3(s)$  as reported in Appendix 5.3 of Ref. 37 (p.376). The others were consistent with the previous measurements although, as in Ref. 37, they could not be easily assigned.



Fig. S2 Infra-red spectrum of precipitated NaEu(CO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O(s).

