\# Supplementary Material (ESI) for New Journal of Chemistry \# This journal is © The Royal Society of Chemistry and \# The Centre National de la Recherche Scientifique, 2005

Supporting Information:

Experimental and theoretical studies of a naturally occurring nonoligomeric steroidal supramolecular zipper

Orde Q. Munro, ${ }^{*{ }^{a}}$ Karen du Toit, ${ }^{b}$ Siegfried E. Drewes,,${ }^{a}$ Neil R. Crouch,,${ }^{b c}$ and Dulcie A. Mulholland ${ }^{b d}$
${ }^{a}$ School of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa. Fax: 27 33260 5009; Tel: 2733260 5270; munroo@ukzn.ac.za
${ }^{b}$ School of Chemistry, University of KwaZulu-Natal, Durban 4041, South Africa
${ }^{c}$ Ethnobotany Unit, South African National Biodiversity Institute, PO Box 52099, Berea Road, 4007, South Africa
${ }^{d}$ School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK

Fig. S1 View approximately down the c-axis of the unit cell of $\beta, 2 \beta, 3 \beta, 4 \beta, 5 \beta, 7 \alpha$-hexahydroxy-spirost-25(27)-en-6-one (K. Miyahara, F. Kumamoto, and T. Kawasaki, Tetrahedron Lett. 1980, 21, 83; CSD code: HXSPEO) illustrating the hydrogen-bonded supramolecular structure. The axis of the one-dimensional hydrogen-bonded supramolecular zipper runs co-linear with the b-axis of the unit cell.

Fig. S2 DFT/AM1-calculated structure of the trimer geometry of $25 \mathrm{R}, 5 \beta$-spirostane- $1 \beta, 3 \alpha$-diol (compound 1). Selected distances are given in \AA. The portion of the structure rendered as a ball-and-stick model was calculated at the B3LYP/6-31+G** level of theory; the remainder of the structure was calculated at the AM1 level of theory (semi-empirical).

Fig. S3 Experimental (X-ray diffraction, 295 K) hydrogen bond distances (in \AA) for compound 1. The distances shown above, correct to three significant numbers and consistent with the accuracy of the experimental measurement, are $2.22(6) \AA$ and $2.00(3) \AA$. Although the theoretical distances (Fig. S2) are in good agreement with the experimental values, they do not fully distinguish between lateral and vertical hydrogen bonds in the structure.

