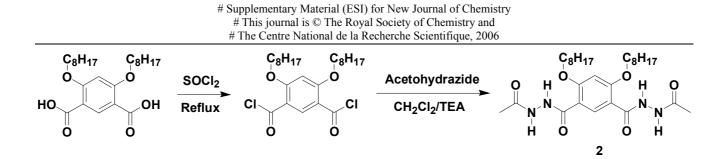
Electronic Supplementary Information (ESI)

A programmed hydrogen bonding array self-assembles into a polymeric pipper-like architecture


Yong Yang,^{*a,b*} Ya-Zhou Zhang,^{*a,b*} Ya-Lin Tang^{*a*} and Chuan-Feng Chen*^{*a*}

^a Laboratory of Chemical Biology, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China. E-mail: cchen@iccas.ac.cn


^b Graduate School, Chinese Academy of Sciences, Beijing 100039, China.

Contents

Experimental preparations for molecule 1 and 2	S2
Thermal ellipsoid representation of X–ray structures of 1 and 2	S4
Packing diagrams	S 5
NOESY spectra for molecule 1 and 2	S6
Diluting ¹ H NMR experiments data and calculation of association constant	S8
Variable-temperature ¹ H NMR experiments data	S12

N'-Acetyl-2-(octyloxy)benzohydrazide (1): 2-Octyloxybenzoic acid¹ (1.00 g, 4 mmol) was dissolved in thionyl chloride (10 mL), and the mixture was heated under reflux with a calcium chloride drying tube for 8 hours. The excess thionyl chloride was removed under reduced pressure. The crude acid chloride was directly used for the next step without further purification. A solution of the above-prepared acid chloride in CH₂Cl₂ (10 mL) was dropwise added to a solution of acetohydrazide (0.6 g, 8 mmol) and triethylamine (1.1 mL, 8 mmol) in CH₂Cl₂ (10 mL) over a period of 10 minutes with ice-water bath equipped. Then the ice-water bath was removed, and the reaction mixture was stirred at room temperature for 1 hour. More CH₂Cl₂ (30 mL) was added. The solution was then washed with diluted 2N HCl (20 mL), saturated Na₂CO₃ aqueous solution (20 mL) and saturated brine (20 mL) successively. The organic layer was dried over anhydrous Na₂SO₄. The solvent was evaporated under reduce pressure. The crude product was recrystallized from methanol to give 1.18 g (96.4 %) of 1 as a white solid. Mp: 102-3 °C. ¹H NMR (CDCl₃): δ 11.04 (d, J=7.4 Hz, 1H, H-N), 10.31 (d, J=7.3 Hz, 1H, H-N), 8.18 (g, J=1.2 Hz, 7.7 Hz, 1H, H-Ar), 7.49 (t, J=8.3 Hz, 1H, H-Ar), 7.07 (t, J=7.5 Hz, 1H, H-Ar), 7.00 (d, J=8.3 Hz, 1H, H-Ar), 4.17 (t, J=6.7 Hz, 2H, CH₂O), 2.16 (s, 3H, COCH₃), 2.00-2.06 (m, 2H, CH₂), 1.48-1.53 (m, 2H, CH₂), 1.36-1.41 (m, 2H, CH₂), 1.27-1.32 (m, 6H, CH₂), 0.88 (t, J=6.6 Hz, 3H, CH₃). ¹³C NMR (CDCl₃): δ 165.2, 160.1, 157.3, 133.5, 131.8, 121.1, 118.7, 112.3, 69.6, 31.8, 29.21, 29.15, 28.9, 26.0, 22.6, 20.6, 14.1. IR (KBr, cm⁻¹): 3345.89, 3190.65, 2923.56, 2853.17, 1605.45, 1475.28, 1286.29, 1230.36. MS (EI): *m/z* 306 (M⁺), 233 (100), 121. Elemental analysis calcd (%) for C₁₇H₂₆N₂O₃: C 66.64, H 8.55, N 9.14; found: C 66.66, H 8.70, N 8.99.

N^{*i*}′, *N*³′-Diacetyl-4,6-bis(octyloxy)benzene-1,3-dihydrazide (2): This compound was prepared as a white solid (96.7 %) from 4,6-bis (octyloxy)benzene-1,3-dioic acid² and acetohydrazide according to the procedure described for **1**. Mp: 201-2 °C. ¹H NMR (CDCl₃): δ 10.65 (d, *J*=7.6 Hz, 2H, **H**-N), 9.55 (d, *J*=7.4 Hz, 2H, **H**-N), 9.00 (s, 1H, Ar-H), 6.51 (s, 1H, Ar-H), 4.21 (t, *J*=6.7 Hz, 4H, CH₂O), 2.15 (s, 6H, COCH₃), 2.04-2.08 (m, 4H, CH₂), 1.50-1.56 (m, 4H, CH₂), 1.38-1.44 (m, 4H, CH₂), 1.24-1.35 (m, 12H, CH₂), 0.89 (t, *J*=6.8 Hz, 6H, CH₃). ¹³C NMR (CDCl₃): δ 165.0, 161.0, 159.1, 136.7, 112.4, 96.23, 70.3, 31.8, 29.2, 29.1, 28.8, 26.0, 22.6, 20.7, 14.1. IR (KBr, cm⁻¹): 3325.64, 3204.15, 2957.3, 2927.41, 2854.13, 1618.95, 1543.74, 1484.67, 1400.07, 1282.43, 1264.11. MS (EI): *m/z* 534 (M⁺), 461 (100). Elemental analysis ca lcd (%) for C₂₈H₄₆N₄O₆: C 62.90, H 8.67, N 10.48; found: C 62.77, H 8.71, N 10.52.

⁽¹⁾ Zhao, X.; Wang, X.-Z.; Jiang, X.-K.; Chen, Y.-Q.; Li, Z.-T.; Chen, G.-J. J. Am. Chem. Soc. 2003, 125, 15128-15139.

 ⁽²⁾ Yuan, L.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu, D.; Guo, H.; Gong, B. J. Am. Chem. Soc. 2004, 126, 11120-11121.

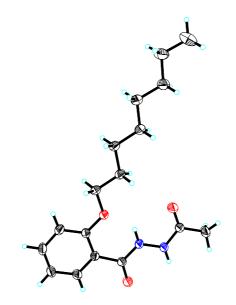


Figure S1. Thermal ellipsoid representation of X-ray structure of 1.

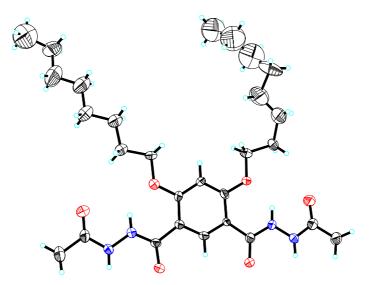


Figure S2. Thermal ellipsoid representation of X-ray structure of 2.

Supplementary Material (ESI) for New Journal of Chemistry # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2006

Figure S3. (a) Crystal packing of **1** viewed along the *b*-axis. Crystal packing of **2** viewed along the *a*-axis: (b) zipper locked by hydrogen bonding and (c) zipper locked by van der Waals interaction. (d) Illustration of lamellar structure of **2**.

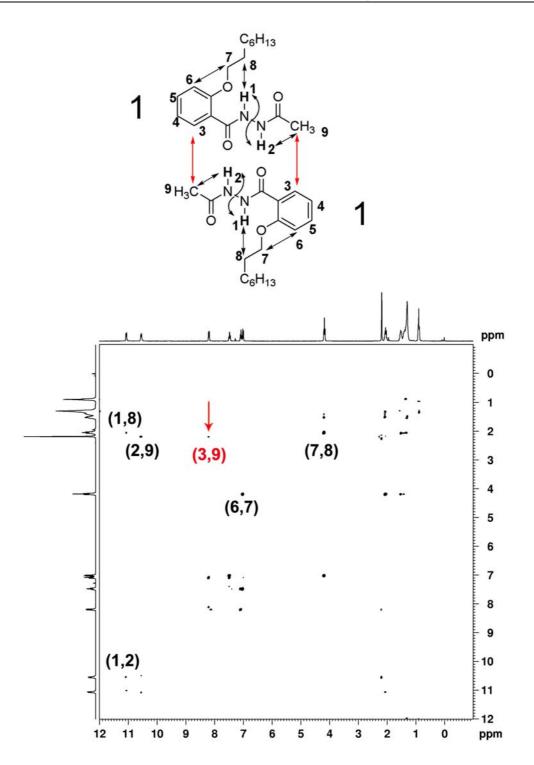
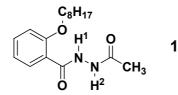



Figure S4. NOESY spectrum of 1 (300 MHz, CDCl₃).

Figure S5. NOESY spectrum of 2 (300 MHz, CDCl₃).

Table S1. Chemical shifts of H^1 and H^2 at different concentrations.

Concentation (mM)	200	100	50	40	30	20	10	5	2.5	1	0.5
Chemical shift of H ¹ (ppm) ^a	11.060	11.043	11.007	10.989	10.983	10.965	10.936	10.906	10.890	10.878	10.872
Chemical shift of H ² (ppm)	10.547	10.310	9.962	9.831	9.732	9.555	9.281	9.028	8.890	8.794	8.756

(a) TMS as inner standard.

Nonlinear regression analysis is based on the following equation:^{3,4}

+

Α

Α AA $K_d = \frac{[AA]}{[A]^2}$ $[A] = [A]_0 - 2[AA]$ $[AA] = \frac{4K_d[A]_0 + 1 - \sqrt{8K_d[A]_0 + 1}}{8K_d}$ $\delta_{obs} = \frac{2[AA]}{[A]_0} \delta_d + \frac{[A]}{[A]_0} \delta_f$ $=\delta_{f} + (\delta_{d} - \delta_{f}) \frac{4K_{d}[A]_{0} + 1 - \sqrt{8K_{d}[A]_{0} + 1}}{4K_{d}[A]_{0}}$ [A]: the concentration of unbound free species $[A]_0$: the total concentration [AA]: the concentration of dimer K_d : the dimerization constant δ_d : the limiting bound chemical shift of the dimer δ_f : the free chemical shift δ_{obs} : chemical shift measured by experiment

The dimerization constant was obtained by fitting the NMR data into the above equation with Origin's nonlinear regression method (Version: Origin 6.1) based on Levenberg-Marquardt (LM) algorithm on a PC computer.

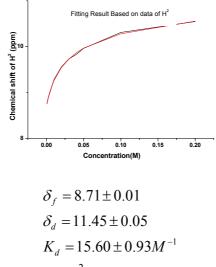


Figure S6. Fitting result based on H². Black: experimental data; Red: fitting result.

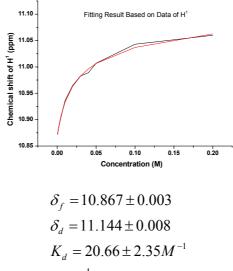
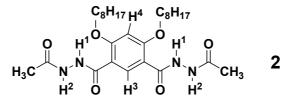



Figure S7. Fitting result based on H¹. Black: experimental data; Red: fitting result.

⁽³⁾ Wilcox, C. S. In Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, H.-J., Durr, H., Eds.; VCH: New York, 1991; pp123-143.

 ⁽⁴⁾ Bisson, A. P.; Carver, F. J.; Eggleston, D. S.; Haltiwanger, R. C.; Hunter, C. A.; Livingstone, D. L.; McCabe, J. F.; Rotger, C.; Rowan, A. E. J. Am. Chem. Soc. 2000, 122, 8856-8868.

Supplementary Material (ESI) for New Journal of Chemistry # This journal is © The Royal Society of Chemistry and # The Centre National de la Recherche Scientifique, 2006

Table S2. Chemical shifts of H^1 and H^2 at different concentrations.

Concentation (mM)	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5
Chemical shift of H ¹ (ppm) ^a	10.627	10.627	10.624	10.620	10.616	10.611	10.605	10.597	10.588	10.578
Chemical shift of H ² (ppm)	9.419	9.396	9.366	9.320	9.286	9.224	9.158	9.130	8.986	8.897

a: TMS as inner standard.

The association constant for chain extension of the aggregate was obtained by fitting the NMR data into the above equation with Origin's nonlinear regression method (Version: Origin 6.1) based on Levenberg-Marquardt (LM) algorithm on a PC computer.

$$[Agg] = [A]_0 \{1 - \frac{2}{1 + \sqrt{1 + 4K_a[A]_0}}\}$$

$$[A] = [A]_0 - [Agg]$$

$$\delta_{obs} = \frac{[Agg]}{[A]_0} \delta_b + \frac{[A]}{[A]_0} \delta_f$$

$$= \delta_f + (\delta_f - \delta_b) \frac{2}{1 + \sqrt{4K_a[A]_0 + 1}}$$

 $[A]_0$: the total concentration

[A]: the concentration of sites which are unbound

[Agg]: the concentration of sites involved in intermolecular interactions in the aggregate

 K_a : the association constant for chain extension of the aggregate

 δ_b : the limiting bound chemical shift of the bound sites in the aggregate

 δ_f : the free chemical shift

 $\delta_{\textit{obs}}$: chemical shift measured by experiments

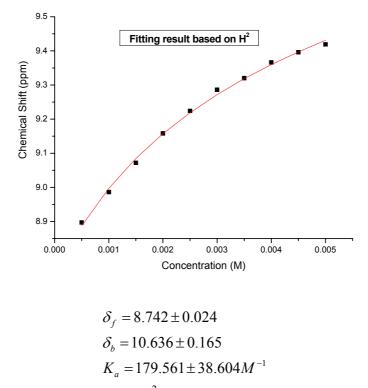
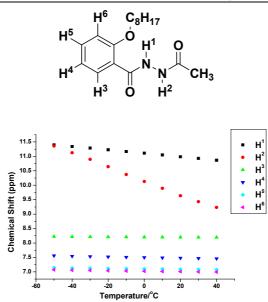
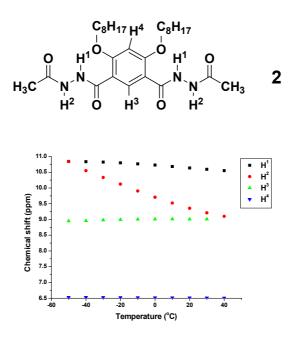



Figure S8. Fitting result based on H². Black: experimental data; Red: fitting result.


Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2006

Temperature coefficient of \mathbf{H}^{1}_{\pm} -5.92×10⁻³ ppm/K.

Temperature coefficient of \mathbf{H}^2 -2.41×10⁻² ppm/K.

Figure S9. Chemical shifts of protons of 1 at different temperatures. TMS as inner standard.

Temperature coefficient of \mathbf{H}^{1} : -3.4×10⁻³ ppm/K. Temperature coefficient of \mathbf{H}^{2} : -1.94×10⁻² ppm/K.

Figure S10. Chemical shifts of protons of 2 at different temperatures. TMS as inner standard.