This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

Supplementary information for

New ionic liquid crystal based on imidazolium salts.

William Dobbs,^a Laurent Douce,^{*a} Lionel Allouche,^b Alain Louati,^c François Malbosc^d and Richard Welter^e

^a Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Organiques, UMR 7504, CNRS-Université Louis Pasteur, BP 43, 23 rue du Loess,F-67034 Strasbourg Cedex 2, France. Fax: 33 388 107 246; Tel: 33 388 107 107; E-mail: <u>laurent.douce@ipcms.u-strasbg.fr</u>

^b Service de R.M.N., Institut de Chimie de Strasbourg, CNRS-ULP, 1 rue Blaise Pascal, 67000 Strasbourg.

^c Laboratoire d'Electrochimie Analytique, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex

^d SOLVIONIC SA, Parc Technologique Delta Sud, BP 24, 09120 Varilhes.

^e Laboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, 67000 Strasbourg, France

Experimental Section

Measurements:

The NMR spectroscopy experiments were performed with a Brucker AVANCE 300 spectrometer at the resonating frequencies 300.13 MHz for ¹H NMR spectra and at 75.48 MHz for ¹³C NMR spectra. CDCl₃ was used as solvent for the NMR experiments. For internal calibration the solvent peak of CDCl₃ was used: δ (¹H) = 7.27 ppm; δ (¹³C) = 77 ppm.

Elemental analyses were performed by the analytical service at the Institut Charles Sadron and by the analytical service at the Université Louis Pasteur (Strasbourg, France).

1-(4-dodecyloxybenzyl)-3-methyl-1*H*-imidazol-3-ium thiocyanate: 1c

Same experimental procedure as for 1b (3-(4-dodecyloxybenzyl)-1-methyl-1*H*-imidazolium bromide (250 mg, 0.57mmol) potassium thiocyanate (55mg, 0.57 mmol)). Yield white solid 226 mg, 95 % (Found C, 66.3; H, 9.0; N, 9.6. $C_{24}H_{37}N_3O_1S.H_2O$ requires C, 66.5; H, 9.1; N, 9.7). v_{max}/cm^{-1} 3147 (C-H aromatic); 2916 and 2849 (C-H aliphatic); 2064 (SCN⁽⁻⁾), 1514 (C=C aromatic); 1249 (aromatic ether). δ_H (300 MHz; CDCl₃): 0.82 (3 H, t, J 6.8, CH₃ aliphatic chain) ; 1.20 (16 H, br s, CH₂ aliphatic chain) ; 1.33-1.38 (2 H, m, CH₂ aliphatic chain) ; 1.71 (2 H, q, J= 6.8 Hz, O-CH₂-CH₂) ; 3.88 (2 H, t, J 6.5, OCH₂) ; 4.02 (3 H, s, CH₃-N); 5.36 (2 H, s, N-CH₂-Ph) ; 6.86 (2 H, d, J 8.6, CH phenyl) ; 7.08 (1 H, m, CH imidazolium) ; 7.13 (1 H, m, CH imidazolium) ; 7.31 (2 H, d, J 8.6, CH phenyl) ; 9.63 (1 H, s, N-CH-N). δ_c (75 MHz; CDCl₃): 14.05 (CH₃ aliphatic chain) ; 36.72 (N-CH₃) ; 52.26 (N-CH₂-Ph) ; 68.12 (O-CH₂) ; 115.27 (CH phenyl) ; 121.80 ; 123.54 (CH imidazolium) ; 124.22 (C phenyl) ; 130.66 (CH phenyl) ; 131.66 (SCN) ; 136.64(N-CH-N) ; 160.01 (C phenyl).

1-(4-dodecyloxybenzyl)-3-methyl-1*H*-imidazol-3-ium hexafluorophosphate: 1d

Same experimental procedure as for 1b (3-(4-dodecyloxybenzyl)-1-methyl-1*H*-imidazolium bromide (250 mg, 0.57 mmol)) and potassium hexafluorophosphate (105mg, 0.57 mmol)). Yield: white solid 285 mg, 99 % (Found C, 54,8; H, 7,0; N, 5,6 $C_{23}H_{37}F_6N_2OP$ requires C, 55,0; H, 7.4; N, 5.6). v_{max}/cm^{-1} 3178 (C-H aromatic), 2916 and 2850 (C-H aliphatic), 1251 (aromatic ether), 823 (PF₆⁽⁻⁾). δ_H (300 MHz; CDCl₃): 0.87 (3 H, t, J 6.8, CH₃ aliphatic chain) ; 1.27 (16 H, br s, CH₂ aliphatic chain) ; 1.39-1.46 (2 H, m, CH₂ aliphatic chain) ; 1.78 (2 H, q, J 6.8, O-CH₂-CH₂) ; 3.93 (3 H, s, CH₃-N) ; 3.94 (2 H, t, J 6.6, OCH₂) ; 5.24 (2 H, s , N-CH₂-Ph) ; 6.93 (2 H, d, J 9.0, CH phenyl) ; 7.10 (1 H, m, CH imidazolium) ; 7.31 (2 H, d, J 8.7, CH phenyl) ; 8.69 (1 H, s, N-CH-N). δ_c (75 MHz; CDCl₃): 14.09 (CH₃ aliphatic chain) ; 22.66 ; 26.00 ; 29.17 ; 29.33 ; 29.40 ; 29.56 ;

Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

 $\begin{array}{l} 29.59 ; 29.61 ; 29.65 ; 31.90 (\underline{CH}_2 \ aliphatic \ chain) ; & 36.21 (N-\underline{CH}_3) ; 53.09 (N-\underline{CH}_2-Ph) ; 68.17 (O-\underline{CH}_2) ; \\ 115.35 (\underline{CH} \ phenyl) ; & 121.65 ; \\ 123.95 (\underline{CH} \ imidazolium) ; & 123.95 (\underline{C} \ phenyl) ; \\ 130.57 (\underline{CH} \ phenyl) ; & 135.82 (N-\underline{CH}-N) ; \\ 160.13 (\underline{C} \ phenyl). \end{array}$

1-(4-dodecyloxybenzyl)-3-methyl-1*H*-imidazol-3-ium bis[(trifluoromethyl)sulfonyl]azanide: 1f

Same experimental procedure as for 1b (3-(4-dodecyloxybenzyl)-1-methyl-1*H*-imidazolium bromide (250 mg, 0.57mmol) and lithium bis[(trifluoromethyl)sulfonyl]azanide (164mg, 0.57 mmol)). Yield: crystalline white solid 363 mg, 93 % (Found C, 47.15; H, 5.9; N, 6.6 $C_{25}H_{37}F_6N_3O_5S_2$ requires C, 47.1; H, 5.85; N, 6.6). v_{max}/cm^{-1} 3156 (C-H aromatic), 2918 and 2848 (C-H aliphatic), 1517 (C=C aromatic), 1353 and 1180 ([CF₃SO₂]₂N⁻). δ_{H} (300 MHz; CDCl₃): 0.89 (3 H, t, J 6.8, CH₃ aliphatic chain) ; 1.27 (16 H, br s, CH₂ aliphatic chain) ; 1.40-1.47 (2 H, m, CH₂ aliphatic chain) ; 1.79 (2 H, m, O-CH₂-CH₂) ; 3.96 (2 H, t, J 6.5, OCH₂) ; 3.99 (3 H, s, CH₃-N) ; 6.94 (2 H, d, J 8.6, CH phenyl) ; 7.12 (1 H, m, CH imidazolium) ; 7.16 (1 H, m, CH imidazolium) ; 7.31 (2 H, d, J 8.6, CH phenyl) ; 8.93 (1 H, s, N-CH-N). δ_c (75 MHz; CDCl₃): 14.04 (CH₃ aliphatic chain) ; 22.62 ; 25.95 ; 29.12 ; 29.29 ; 29.34 ; 29.52 ; 29.55 ; 29.58 ; 29.60 ; 31.86 (CH₂ aliphatic chain) ; 36.27 (N-CH₃) ; 53.15 (N-CH₂-Ph) ; 68.15 (O-CH₂) ; 115.36 (CH phenyl) ; 119.76 (quadruplet, J= 321.2 Hz, CF₃) 121.89 ; 123.70 (CH imidazolium) ; 123.79 (C phenyl) ; 135.63 (N-CH-N) ; 160.20 (C phenyl).

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

DOSY NMR¹H experimental Section

NMR: Spectra were recorded on a Bruker Avance500 spectrometer, at 11.7 Tesla, at the resonating frequencies of 500.13 MHz for ¹H. The diffusion NMR experiments were performed with a Pulsed Field Gradient Stimulated Echo sequence, using bipolar gradients.(REF) The bipolar gradient duration and the diffusion time were optimized (respectively 1 ms and 200 ms). The incremented pulsed field gradient was applied linearly between 1 and 50 G/cm. DOSY spectra were generated by the program GIFA 5.2 – DOSY module, developed by the NMRTec company, using adapted algorithms like invert Laplace transform and maximum entropy to build the diffusion dimension.

Figure S1: ¹H NMR DOSY spectrum of 1a at low concentration. All diffusion peaks are centred to 700 μ m².s⁻¹, implying that the solution contains one type of molecular object. Here, 1a is free in solution.

- # Supplementary Material (ESI) for New Journal of Chemistry
- # This journal is (c) The Royal Society of Chemistry and
- # The Centre National de la Recherche Scientifique, 2006

Figure S2: ¹H NMR DOSY spectrum of **1a** at high concentration. Diffusion peaks are spread out from 450 to 700 μ m².s⁻¹, implying that the solution contains several types of molecular object, bigger in size than **1a**. The solution is a polydisperse mixture, composed by molecular aggregates.

(ppm)

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

Mesomorphic Section

The optical textures of the mesophases were studied with a Leitz polarizing microscope equipped with a Mettler FP80 hot -stage and an FP80 central processor. The transition temperatures and enthalpies were measured by differential scanning calorimetry with a Perkin-Elmer DSC-7 instrument operated at a scanning rate of 5 °C.min⁻¹ on heating. The apparatus was calibrated with indium (156.6 °C, 28.4 J.g⁻¹) and gallium (29.8 °C) as the standards. The TGA measurements were carried out on a SDTQ 600 apparatus at scanning rate of 10 °C.min⁻¹. The transmission Guinier geometry was used for obtain the XRD patterns. In this case, a linear monochromatic Cu-K α_1 beam ($\lambda = 1.5405$ Å) was obtained using a sealed-tube generator (900 W) equipped with a bent quartz monochromator. For all compounds, the crude powder was filled in Lindemann capillaries of 1 mm diameter and the result was recorded on an image plate. In each case, exposure times were varied from 12 to 24 h.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

 2^{nd} order 3^{rd} order

Figures S4 top: XRD plate image of 1b (BF₄); bottom: a more contrasted view of the plate.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2006

Figure S5: DSC thermograms of **1a-1f**. Phase transition temperatures (°C) and corresponding enthalpy (J/g) were measured from the 1st heating cycle, except for the Liquid Crystal-Isotrope transition of **1a**, which has been determined during the TGA experiment.

- # Supplementary Material (ESI) for New Journal of Chemistry
- # This journal is (c) The Royal Society of Chemistry and
- # The Centre National de la Recherche Scientifique, 2006

Electrochemical Section

Figure S6 Cyclic voltammograms of ionic liquids **1a-1f** in CH₃CN (0.1 M NBu₄PF₆). Scan rate 100 mV s⁻¹.