Supporting Information

Figure S1 : Cyclic voltammetry of $[Mo_2(cp)_2(\mu-SMe)_3(\mu-\eta^1-N_2HPh)]^+$, **1-H**⁺ (ca 0.8 mM) in thf-[NBu₄][PF₆] (vitreous carbon electrode, $v = 0.2 \text{ V s}^{-1}$).

Figure S2 : Cyclic voltammetry of $[Mo_2(cp)_2(\mu-SMe)_3(\mu-\eta^1:\eta^1-HN_2Ph)]^+$, (present essentially as **2-H**⁺) formed in situ from **1-H**⁺ (ca 0.8 mM) (see figure S1) in thf-[NBu₄][PF₆] (vitreous carbon electrode, $v = 0.2 \text{ V s}^{-1}$).

Figure S3 : Eyring plots of kinetic data for the μ - $\eta^1 \rightarrow \mu$ - η^1 : η^1 isomerization of [Mo₂(cp)₂(μ -SMe)₃(μ -N₂Ph)] in thf (\bigstar) and in CH₂Cl₂ (\blacksquare); the lines represent the least-square plots in thf (-; R² = 0.998) and in CH₂Cl₂ (---; R² = 0.999).

Figure S4: Cyclic voltammetry of $[Mo_2(cp)_2(\mu-SMe)_3(\mu-\eta^1-N_2Ph)]$, **1** (1.2 mM) in thf– [NBu₄][PF₆]. Curve b) shows the characteristic redox processes of the diazene complex **2-H²⁺** (arrows); that the reduction peak around -1.6 V arises from oxidation of **1** is shown by its absence in the negative-going scan (T = 18°C; vitreous carbon electrode; $v = 0.2 \text{ V s}^{-1}$).

Figure S5 : Cyclic voltammetry of *syn*-[Mo₂(cp)₂(μ -SMe)₃(μ - η^{1} : η^{1} -N₂Ph)], **3** in CH₂Cl₂-[NBu₄][PF₆] at -46°C showing the reversible (*anti*) **2**²⁺/**2**⁺ couple at a potential slightly less positive than the onset of the oxidation of **3**⁺ (ν = 0.1 V s⁻¹; vitreous carbon electrode).