Supporting information for:

Nickel-Catalyzed Cyclization of α, ω-Dienes: Formation vs. Cleavage of C-C Bonds

David Nečas, ${ }^{* a}$ Matyáśs Turský, ${ }^{a}$ Iva Tišlerová ${ }^{a}$ and Martin Kotora*a,b
${ }^{\dagger}$ Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University, Albertov 2030, 12843 Prague 2, Czech Republic and ${ }^{\ddagger}$ Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic

1. General Methods.

Solvents were dried by standard methods (THF, toluene-Na, benzophenone; dichloromethane- CaH_{2}) and distilled under argon before use. All other reagents were obtained from commercial sources and used without further purification. GC analyses were obtained on a Shimadzu GC-17A chromatograph equipped with a Zebron ZB-5 column (5\% phenyl-95\% dimethyl polysiloxane). Infrared spectra were recorded on a Bruker IFS 88 spectrometer as CHCl_{3} solutions and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded as CDCl_{3} solutions on a Varian UNITY 400 INOVA instrument (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz) with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Mass spectra were obtained on a FINNIGAN MAT INCOS 50 instrument. Ni-catalyzed reactions were carried out under argon atmosphere in oven-dried Schlenk tubes. Yields were determined by the means of ${ }^{1} \mathrm{H}$ NMR with mesitylene as an internal standard. HPLC separations were performed on a $25 \times 250 \mathrm{~mm}$ preparative silica gel column (Labio, Czech Republic), filled with BIOSPHER PSI 100 ($7 \mu \mathrm{~m}$ mesh).

2. Preparation of Starting Materials

Diethyl di(prop-2'-en-1'-yl)propandioate (1a).

Allylation of allylmalonate was carried out according to the previously reported procedure. ${ }^{1}$ Sodium metal ($0.58 \mathrm{~g}, 25 \mathrm{mmol}$) was dissolved in absolute ethanol (25 mL), then was slowly added diethyl allylmalonate ($4 \mathrm{~g}, 25 \mathrm{mmol}$) followed by dropwise addition of allyl bromide $(3.2 \mathrm{~g}, 26.4 \mathrm{mmol})$, and the reaction mixture was refluxed for 60 min . The mixture was then acidified with glacial acetic acid, filtered, and concentrated under reduced pressure. The residue was dissolved in water, extracted with diethylether, collected organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated on rotary evaporator. Distillation of the residue under reduced pressure afforded $4.69 \mathrm{~g}(78 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.64(\mathrm{dt}, J=7.1,1.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.18(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $4 \mathrm{H}), 5.07-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.60-5.72(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{1 a}$ were in agreement with the previously published data.

Dibenzyl di(prop-2'-en-1'-yl)propandioate (1b).

Dibenzylmalonate ($1.07 \mathrm{~g}, 3.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~g}, 16 \mathrm{mmol})$ and tetrabutylammonium hydrogensulfate ($200 \mathrm{mg}, 0.6 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. Then allylbromide $(0.95 \mathrm{~g}, 7.8 \mathrm{mmol})$ was added and the reaction mixture was refluxed for 72 h , at which time it was added a $10-\mathrm{mL}$ portion of water and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ $\mathrm{mL})$. Organic fraction were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated on a rotary evaporator, and column chromatography on silica gel ($5 / 1$ hexane/EtOAc) afforded $888 \mathrm{mg}(68 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.67(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.00-$ $5.08(\mathrm{~m}, 4 \mathrm{H}), 5.10(\mathrm{~s}, 4 \mathrm{H}), 5.54-5.66(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 36.71 (2C), 57.53, 66.99 (2C), 119.39 (2C), 128.20 (4C), 128.26 (2C), 128.46 (4C), 131.94 (2C), $135.34(2 \mathrm{C}), 170.39(2 \mathrm{C})$. The spectral characteristics of $\mathbf{1 b}$ were in agreement with the previously published data. ${ }^{2}$

Ethyl benzyl di(prop-2'-en-1'-yl)propandioate (1c).

The preparation was analogous to $\mathbf{1 b}$. Benzylethylmalonate ($0.6 \mathrm{~g}, 2.7 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g}$, $13 \mathrm{mmol})$ and tetrabutylammonium hydrogensulfate ($168 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$. Column chromatography on silica gel (3/1 hexane/EtOAc) afforded $720 \mathrm{mg}(88 \%)$ as a colourless liquid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 4.00(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.56-5.68(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.38$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.99,36.68(2 \mathrm{C}), 57.36,61.30,66.87,119.26(2 \mathrm{C}), 128.24$ (2C), 128.27, 128.45 (2C), 132.11 (2C), 135.48, 170.51, 170.57; IR ($\left.\mathrm{CHCl}_{3}\right) 925,993,1028$, 1143, 1194, 1226, 1287, 1455, 1641, $1728 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) $302\left(\mathrm{M}^{+}, 16\right), 284$ (15), 261 (29), 256 (52), 238 (16), 211 (13), 167 (8), 130 (9), 91 (100); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} 302.1518$, found 302.1507 .

Ethyl 2-acetyl-2-allylpent-4-enoate (1d).

The preparation was analogous to $\mathbf{1 b}$. Ethyl 3-oxobutanoate ($13 \mathrm{~g}, 100 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g}$, 40 mmol), tetrabutylamonium hydrogensulfate ($5 \mathrm{~g}, 15 \mathrm{mmol}$), allyl bromide ($25 \mathrm{~g}, 206.6$ $\mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. column chromatography on silica gel ($3 / 1$ hexane/EtOAc) afforded $18.3 \mathrm{~g}(87 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.69(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-5.14$ $(\mathrm{m}, 4 \mathrm{H}), 5.54-5.66(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{1 d}$ were in agreement with the previously published data. ${ }^{3}$

3,3-Diallylpentane-2,4-dione (1e).

The preparation was analogous to $\mathbf{1 b}$. 2,4-Pentanedione ($10 \mathrm{~mL}, 97.4 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~g}$, 40 mmol), tetrabutylamonium hydrogensulfate ($5 \mathrm{~g}, 15 \mathrm{mmol}$), allyl bromide ($25 \mathrm{~g}, 206.6$ $\mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. Column chromatography on silica gel ($3 / 1$ hexane/EtOAc) afforded $14.9 \mathrm{~g}(85 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right)$
$\delta 2.11(\mathrm{~s}, 6 \mathrm{H}), 2.66(\mathrm{dm}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.08-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.54(\mathrm{ddt}, J=16.4,8.0,7.3 \mathrm{~Hz}$, $2 H)$. The spectral characteristics of $\mathbf{1 e}$ were in agreement with the previously published data. ${ }^{3}$

Methyl 2-allyl-2-phenylpent-4-enoate (1f).

The preparation was analogous to $\mathbf{1 b}$. Methyl 2-phenylacetate ($1.13 \mathrm{~g}, 7.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.6$ $\mathrm{g}, 40 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.5 \mathrm{~g}, 1.5 \mathrm{mmol})$, allyl bromide $(1.86 \mathrm{~g}, 15.5 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}$ $(15 \mathrm{~mL})$. Column chromatography on silica gel ($3 / 1$ hexane/EtOAc) afforded $1.19 \mathrm{~g}(69 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me} 4 \mathrm{Si}\right) \delta 2.73-2.84(\mathrm{~m}, 4 \mathrm{H}), 3.65$ $(\mathrm{s}, 3 \mathrm{H}), 5.03-5.09(\mathrm{~m}, 4 \mathrm{H}), 5.47-5.57(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 38.86$ (2C), 51.99, 53.54, 118.61 (2C), 126.31 (2C), 126.84, 128.34 (2C), $133.31(2 \mathrm{C}), 141.68,175.44 ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 922,996,1141,1229,1275,1445,1640,1727$, 2952, 3011, $3028 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) $230\left(\mathrm{M}^{+}, 8\right), 189$ (34), 171 (26), 157 (19), 129 (100), 121 (46), 115 (26), 91 (39); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$ 230.1307, found 230.1313.

3-Bis-(prop-2'-en-1'-yl)coumaran-2-one (1g).

The preparation was analogous to $\mathbf{1 b}$. 2-Coumaranone ($1 \mathrm{~g}, 7.46 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.6 \mathrm{~g}, 40$ $\mathrm{mmol})$, tetrabutylamonium hydrogensulfate $(0.5 \mathrm{~g}, 1.5 \mathrm{mmol})$, allyl bromide ($1.82 \mathrm{~g}, 15$ $\mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$. Column chromatography on silica gel ($3 / 1$ hexane/EtOAc) afforded $1.14 \mathrm{~g}(71 \%)$ of the title compound as an yellowish oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta$ 2.57-2.67 (m, 4H), 4.98-5.09 (m, 4H), 5.40-5.51 (m, 2H), 7.06-7.32 (m, 4H). The spectral characteristics of $\mathbf{1 g}$ were in agreement with the previously published data. ${ }^{4}$

Ethyl bis-(prop-2'-en-1'-yl)cyanoacetate (1h).

The preparation was analogous to $\mathbf{1 b}$. Ethyl cyanoacetate ($4.52 \mathrm{~g}, 40 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{~g}$, 240 mmol), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(2 \mathrm{~g}, 8 \mathrm{mmol})$, allyl bromide ($9.68 \mathrm{~g}, 80 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(80 \mathrm{~mL})$. Column chromatography on silica gel ($3 / 1$ hexane/EtOAc) afforded $5.2 \mathrm{~g}(67 \%)$ of the title compound as a colourless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.55$ (dd, $J=13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=13.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.21-5.24$ $(\mathrm{m}, 2 \mathrm{H}), 5.22-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.87(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{1 h}$ were in agreement with the previously published data. ${ }^{5}$

4,4-Bis(benzyloxymethyl)-1,6-heptadiene (1i).

2,2-Diallylpropane-1,3-diol ($1.52 \mathrm{~g}, 9.7 \mathrm{mmol}$) was dissolved in THF (10 mL) and $\mathrm{NaH}(2.2 \mathrm{~g}$ of 50% disp. in oil, 45.8 mmol) was added. Then benzyl bromide ($5.1 \mathrm{~g}, 30 \mathrm{mmol}$) dissolved in THF (15 mL) was added and the reaction mixture was stirred for 12 h , at which time it was added ice and a 10 mL portion of water, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 15 \mathrm{~mL})$. Collected organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated on a rotary evaporator, and column chromatography on silica gel (40/1 hexane/EtOAc) afforded 1.55 g (47%) of the title compound as a colourless liquid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.12(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.31(\mathrm{~s}, 4 \mathrm{H}), 4.47(\mathrm{~s}, 4 \mathrm{H}), 5.02(\mathrm{bs}, 2 \mathrm{H}), 5.05(\mathrm{dm}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74-5.85$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 10 \mathrm{H})$. The spectral characteristics of $\mathbf{1 i}$ were in agreement with the previously published data. ${ }^{6}$

t-Butyl(hepta-1,6-dien-4-yloxy)dimethylsilane (1j).

Hepta-1,6-dien-4-ol ($2.02 \mathrm{~g}, 18 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ were dissolved in dichloromethane (40 mL), then $\mathrm{TBSCl}(3.72 \mathrm{~g}, 24.7 \mathrm{mmol})$ and DMAP ($0.4 \mathrm{~g}, 3.2 \mathrm{mmol}$) were added and the reaction mixture was refluxed for 3 h . The reaction mixture was quenched by water (10 mL), extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. Collected organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated on a rotary evaporator. Distillation of the residue under reduced pressure afforded $1.94 \mathrm{~g}(47 \%)$ of the title compound as a colorless liquid: ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 2.13-2.26(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.76(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{bs}$, $2 \mathrm{H}), 5.04(\mathrm{dm}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{1 j}$ were in agreement with the previously published data. ${ }^{7}$

9,9-Diallylfluorene (1 k).

Allylation of fluorene was carried out according to the previously reported procedure. ${ }^{8}$ Yield $86 \%(5.2 \mathrm{~g}, 21 \mathrm{mmol})$ of an yellowish liquid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 2.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 4 H), 4.74 (ddt, $J=10.1,2.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.83 (ddt, $J=17.1,2.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.19-5.30$ (m, $2 H), 7.27-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.72(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{1 k}$ were in agreement with the previously published data. ${ }^{9}$

N, N-Diallylaniline (11).

Allylation of aniline was carried out according to the previously reported procedure. ${ }^{10}$ Yield $72 \%(3.2 \mathrm{~g}, 18.5 \mathrm{mmol})$ of a colourless liquid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 3.89-3.94(\mathrm{~m}, 4 \mathrm{H})$, 5.14 (ddt, $J=10.4,1.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.18 (ddt, $J=17.2,1.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.81-5.90$ (m, 2H), 6.66-6.73 (m, 3H), 7.17-7.24 (m, 2H). The spectral characteristics of 11 were in agreement with the previously published data. ${ }^{11}$

3. General Procedure for Ni-catalyzed Cyclization of Dienes

To a solution of a diene (1a-11) $(0.5 \mathrm{mmol})$ was added $\mathrm{NiBr}_{2}\left(\mathrm{PBu}_{3}\right)_{2}(15.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dry toluene (3 mL) and 1.8 M solution of $\mathrm{Et}_{2} \mathrm{AlCl}$ in toluene ($55 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) (cond. B) or $\mathrm{NiBr} r_{2}\left(\mathrm{PPh}_{3}\right)_{2}(18.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 1.9 M solution of $\mathrm{Et}_{3} \mathrm{Al}$ in toluene $(53 \mu \mathrm{~L}, 0.1$ mmol) (cond. A) under argon. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 or 3 h , respectively. After that it was quenched with a portion of water (1 mL) followed addition of

3 M solution of $\mathrm{HCl}(3 \mathrm{~mL})$. Organic layer was separated and dried $\left(\mathrm{MgSO}_{4}\right)$. The products isolated HPLC (silica gel, hexane/EtOAc).

4. Products of Ni-complex Catalyzed Cyclization

Diethyl 3-methyl-4-methylenecyclopentane-1,1-dicarboxylate (2a).

Yield 92% (cond. B): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{dm}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.23(\mathrm{~m}, 4 \mathrm{H}), 4.78-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.92(\mathrm{~m}, 1 \mathrm{H})$. The spectral characteristics of $\mathbf{2 a}$ were in agreement with the previously published data. ${ }^{12}$

Diethyl 3,4-dimethylcyclopent-2-ene-1,1-dicarboxylate (3a).

Yield 18% (cond. $\boldsymbol{A}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.79(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{bs}, 1 \mathrm{H})$. The spectral characteristics of $\mathbf{3 a}$ were in agreement with the previously published data. ${ }^{12}$

Diethyl 3,4-dimethylcyclopent-3-ene-1,1-dicarboxylate (4a).

Yield 6% (cond. A): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 2.92$ (bs, 6 H$), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$. The spectral characteristics of $\mathbf{4 a}$ were in agreement with the previously published data. ${ }^{13}$

Dibenzyl 3-methyl-4-methylenecyclopentane-1,1-dicarboxylate (2b).

Yield 75% (cond. B): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.85(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.63 (m, 2H), 2.97 (dd, $J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=1.6$
$\mathrm{Hz}, 1 \mathrm{H}), 4.90(\mathrm{bs}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.97,37.21,40.53,42.08,58.32,67.07,67.14,105.64$ (2C), 127.91 (4C), 128.20 (2C), 128.47 (4C), $135.45,153.07,171.45,171.61$; IR ($\left.\mathrm{CHCl}_{3}\right) 890,1167,1227$, 1254, 1275, $1729 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 364 ($\mathrm{M}^{+}, 1$), 273 (15), 229 (38), 211 (19), 91 (100); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} 364.1675$, found 364.1671 .

Dibenzyl 3,4-dimethylcyclopent-2-ene-1,1-dicarboxylate (3b).

Yield 30% (cond. \boldsymbol{A}): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.96$ (ddd, $J=7.2,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.17(\mathrm{~m}, 4 \mathrm{H}), 5.47$ (bs, 1 H), 7.21-7.34 $(\mathrm{m}, 10 \mathrm{H})$. The spectral characteristics of $\mathbf{3 b}$ were in agreement with the previously published data. ${ }^{14}$

1-Benzyl 1-ethyl 3-methyl-4-methylenecyclopentane-1,1-dicarboxylate (2c).

Yield 91% (cond. B) (3:2 mixture of diastereoisomers). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.54-$ 2.63 (m, 2H), 2.95 (dm, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.80$ $(\mathrm{s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.87$, $17.92,37.22,40.45,42.04,58.17,61.49,66.95,105.48,127.98,128.20,128.45,135.57$, 153.22, 171.62, 171.77. Minor diastereomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dm}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 13.87, 17.97, 37.22, 40.50, 42.08, 58.26, $61.49,67.01,105.51,127.98,128.20,128.45,135.61,153.22,171.62,171.77$. IR $\left(\mathrm{CHCl}_{3}\right)$ 888, 1029, 1067, 1173, 1216, 1255, 1278, $1727 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) $302\left(\mathrm{M}^{+}, 4\right), 258(33)$, 211 (22), 165 (34), 137 (20), 91 (100); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$ 302.1518, found 302.1516.

Ethyl 1-acetyl-3-methyl-4-methylenecyclopentanecarboxylate (2d).

Yield 60% (cond. B) (3:2 mixture of diastereoisomers). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{dd}, J=12.1,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.93-3.02(\mathrm{~m}$, $1 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $13.99,17.86,25.94,37.05,38.97,40.65,61.52,64.29,105.38,153.29,172.52$, 203.67. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.62(\mathrm{dd}, J=12.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.84-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.93-3.02(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.77-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.90(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.99,17.73,26.49,37.38,38.78,41.03,61.58,64.92,105.43$, $153.25,172.73,203.37$. IR $\left(\mathrm{CHCl}_{3}\right) 889,1183,1232,1360,1454,1710,2967 \mathrm{~cm}^{-1}$; EI-MS $\mathrm{m} / \mathrm{z}(\%) 210\left(\mathrm{M}^{+}, 8\right), 192(9), 167$ (82), 139 (49), 121 (38), 93 (53), 43 (100); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} 210.1256$, found 210.1255.

1,1'-Diacetyl-3-methyl-4-methylenecyclopentane (2e).

Yield 28% (cond. B): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{dd}, J=12.8$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=12.8,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88(\mathrm{dm}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dm}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.92(\mathrm{~m}$, $1 \mathrm{H})$. The spectral characteristics of $\mathbf{2 e}$ were in agreement with the previously published data.

Methyl 3-methyl-4-methylene-1-phenylcyclopentanecarboxylate (2f).

Yield 94% (cond. B) (3:2 mixture of diastereoisomers). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{dd}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.61(\mathrm{~m}, 1 \mathrm{H})$, 2.69 (dq, $J=16.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddd, $J=11.9,7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dm}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 4.81-4.86(\mathrm{~m}, 1 \mathrm{H})$, 4.97-5.02 (m, 1H), 7.22-7.38 (m, 5H). Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.35-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.46(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dm}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, 4.81-4.86 $(\mathrm{m}, 1 \mathrm{H}), 4.97-5.02(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 5 \mathrm{H})$. The spectral characteristics of $\mathbf{2 f}$ were in agreement with the previously published data. ${ }^{15}$

3-Methylene-4-methylspiro[cyclopentane-1,3'-coumaran-2-one] (2g).

Yield 93% (cond. B) (5:1 mixture of diastereoisomers): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.25(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=13.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dm}, J$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dm}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.16(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.01$ (m, 1H), $7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 17.47,37.18,44.77,46.80,51.20,105.82,110.42$, $122.66,124.38,128.50,132.70,152.89,153.59,180.85$; IR $\left(\mathrm{CHCl}_{3}\right) 888,1052,1224,1466$, $1796 \mathrm{~cm}^{-1} ;$ EI-MS m/z (\%) 214 (M ${ }^{+}, 100$), 199 (25), 186 (45), 171 (53), 128 (25), 115 (33); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} 214.1000$, found 214.0994.

Ethyl 1-cyano-3-methyl-4-methylenecyclopentanecarboxylate (2h).

Yield 30% (cond. B) (3:2 mixture of diastereoisomers). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{dd}, J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.06(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.29(\mathrm{~m}$, $2 \mathrm{H})$, 4.92-4.98 $(\mathrm{m}, 1 \mathrm{H})$, 4.98-5.05 (m, 1 H$)$. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta$ $1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=12.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.64$ $(\mathrm{m}, 1 \mathrm{H}), 2.81-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dq}, J=16.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.17(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.29(\mathrm{~m}$, $2 \mathrm{H}), 4.88-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.05(\mathrm{~m}, 1 \mathrm{H})$. The spectral characteristic of $\mathbf{2 h}$ was in agreement with the previously published methylester derivative of the title compound. ${ }^{15}$

Ethyl 2-allyl-2-cyanopent-3-enoate (5h).

Yield 16% (cond. B): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=6.4$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (q, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.21(\mathrm{bs}, 1 \mathrm{H}), 5.23(\mathrm{dm}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dq}, J=15.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.83$
$(\mathrm{m}, 1 \mathrm{H}), 6.07(\mathrm{dq}, J=15.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.99,17.60,41.99,51.83$, $62.90,117.48,120.90,124.82,130.48(2 \mathrm{C}), 167.47$; IR $\left(\mathrm{CHCl}_{3}\right) 1220,1603,1729,2919$, $3695 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 193 (M ${ }^{+}, 10$), 166 (11), 152 (11), 124 (16), 120 (18), 106 (20), 93 (31), 41 (32), 32 (100); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ 193.1103, found 193.1099.

1,1-Bisbenzyloxymethyl-3-methylene-4-methylcyclopentane (2i).

Yield 37% (cond. \boldsymbol{A}): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.11$ (dd, $J=13.0$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=12.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.56(\mathrm{~m}, 1 \mathrm{H}), 3.33-$ $3.43(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~d}, J=2 \mathrm{~Hz}, 4 \mathrm{H}), 4.71-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.83(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.63,36.58,39.80,40.58,45.56,73.00,73.15$ (2C), 74.77, 104.39, 127.30 (4C), 127.34 (2C), 128.24 (4C), 138.90 (2C), 156.61. The spectral characteristics of $\mathbf{2 i}$ were in agreement with the previously published data. ${ }^{16}$

1,1-Bisbenzyloxymethyl-3,4-dimethylcyclopent-2-ene (3i).

Yield 65% (cond. B): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{dd}, J=6.8$, 6. $4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{dd}, J=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{qdd}, J=7.2,2.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35-3.47(\mathrm{~m}, 4 \mathrm{H}), 4.48-4.51(\mathrm{~m}, 4 \mathrm{H}), 5.26-5.28(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.80,20.07,39.57,41.48,53.22,73.19,73.21,73.96,75.19,127.19,127.23$ (2C), 127.32 (2C), $127.38(2 \mathrm{C}), 128.19$ (4C), 138.96, 139.00, 146.28; IR ($\left.\mathrm{CHCl}_{3}\right) 920,1141,1191$, 1280, 1450, $1730 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 276 (10), 243 (15), 229 (20), 154 (25), 139 (50), 123 (48), 107 (41), 105 (95), 91 (100), 77 (23). It does not have molecular peak.
(3-Methyl-4-methylenecyclopentyloxy)(tert-butyl)dimethylsilane (2j).

Yield 71% (cond. A) (3:2 mixture of diastereoisomers). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{ddd}, J=12.4,9.6$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dm}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-$ $2.77(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$
-4.75 (2C), 18.12, 18.80, 25.86 (3C), 35.61, 43.31, 44.61, 71.51, 104.67, 156.03. Minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.31(\mathrm{ddd}, J=12.0,10.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{ddq}, J=16.3,7.3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{ddm}, J=16.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.79(\mathrm{~m}$, $1 \mathrm{H}), ~ 4.83-4.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.75(2 \mathrm{C}), 18.13,19.45,25.87(3 \mathrm{C}), 36.34$, 42.82, 44.32, 71.90, 105.05, 155.11. IR (CHCl_{3}) 838, 1097, 1120, 1219, 1257, 1463, 1732, 2933, 2960, $3024 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 169 (49), 101 (2), 93 (3), 75 (100), 59 (3), 41 (3). It does not have molecular peak.

(3,4-Dimethylcyclopent-3-enyloxy)(tert-butyl)dimethylsilane (4j).

Yield 44% (cond. B): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.06$ (s, 6H), 0.89 (s, 9H), 1.59 (bs, 6H), $2.24(\mathrm{dm}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{ddm}, J=14.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.70(2 \mathrm{C}), 13.68(2 \mathrm{C}), 18.34,25.99(3 \mathrm{C}), 48.34(2 \mathrm{C}), 70.92,128.43(2 \mathrm{C}) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 836,900,1086,1254,1367,1466,1682,2856,2929,2956,3529 \mathrm{~cm}^{-1}$; EI-MS m$/ \mathrm{z}$ (\%) 169 (53), 95 (9), 75 (100), 67 (5), 59 (8), 47 (7), 41 (12). It does not have molecular peak.

3-Methylene-4-methylspiro[cyclopentane-1,9'-fluorene] (2k).

Yield 85% (cond. \boldsymbol{A}): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97$ (dd, $J=12.8$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=12.8,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.22(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $2 \mathbf{k}$ were in agreement with the previously published data. ${ }^{17}$

3,4-Dimethylspiro[cyclopent-2-ene-1,9'-fluorene] (3k) and 3,4-dimethylspiro[cyclopent-3-ene-1,9'-fluorene] (4k).

(3k) and

(4k)
Obtained as an inseparable mixture in yield 98% ($\mathbf{3 k}$: 72%, $\mathbf{4 k}$: 26%) (cond. B). $\quad 3 \mathbf{k}: \quad{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{dd}, J=13.3,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{dd}, J=13.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.70$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.75,20.35,43.07,46.93,62.38,119.45,119.59,123.59$, $123.99,126.95,126.98,127.32,127.36,129.28,139.28,139.37,146.97,152.54,152.80$. $4 \mathbf{k}$: Yield 26% (cond. B): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.75$ (s, 6H), 2.79 (s, 4H), 7.20-7.40 (m, $6 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.85(2 \mathrm{C}), 51.19(2 \mathrm{C}), 54.20,119.52(2 \mathrm{C})$, 122.31 (2C), 126.77 (2C), 127.55 (2C), 130.27 (2C), 139.31 (2C), 154.53 (2C).

3-Methyl-4-methylene-1-phenylpyrrolidine (21).

Yield 71% (cond. B): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.68-2.95(\mathrm{~m}$, 2H), 3.63-3.69 (m, 1H), 3.87 (dd, $J=13.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.74(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 2 \mathrm{H})$. The spectral characteristics of $\mathbf{2 l}$ were in agreement with the previously published data. ${ }^{17}$

[^0]
[^0]: 1 Beaulieu, N.; Deslongchamps, P. Can. J. Chem. 1980, 58, 875-877.
 2 Perch, N. S.; Wiedenhofer, R. A. J. Am. Chem. Soc. 1999, 121, 6960-6961.
 ${ }^{3}$ Zhang, S. W.; Mitsudo, T. A.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1993, 450, 197-207.
 4 Nečas, D.; Turský, M.; Kotora, M. J. Am. Chem. Soc. 2004, 126, 10222-10223.
 5 Matsoyan, S. G.; Pogosyan, G. M.; Skripnikova, R. K.; Mushegyan, A. V. Vysokomol. Soed. 1963, 5, 183187.
 ${ }^{6}$ Bray, K. L.; Fairlamb, I. J. S.; Kaiser, J.-P.; Lloyd-Jones, G. C.; Slatford, P. A. Topics in Catalysis 2002, 19, 49-59.
 7 Nugent, W. A.; Feldman, J.; Calabrese, J. C. J. Am. Chem. Soc. 1995, 117, 8992-8998.
 ${ }^{8}$ Knight, K. S.; Wang, D.; Waymouth, R. M. J. Am. Chem. Soc. 1994, 116, 1845-1854.
 9 Datta, S.; Chang, Ch.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294-9295.
 10 Nečas, D.; Kotora, M.; Císařová, I. Eur. J. Org. Chem. 2004, 1280-1285.
 11 Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968-10969.
 12 Grigg, R.; Malone, J. F.; Mitchell, T. R. B.; Ramasubbu, A.; Scott, R. M. J. Chem. Soc., Perkin Trans. 1984, 1745-1754.
 13 Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310-7318.
 14 Kisanga, P.; Goj, L. A.; Widenhoefer, R. A. J. Org. Chem. 2001, 66, 635-637.
 15 Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6372-6380.
 ${ }_{16}$ Okamoto, S.; Livinghouse, T. Organometallics 2000, 19, 1449-1451.
 ${ }^{17}$ Okamoto, S.; Livinghouse, T. J. Am. Chem. Soc. 2000, 122, 1223-1224.

