Supporting information for

Synthesis and Magnetic Properties of Cerium Macrocyclic Complexes with tmtaaH₂, Tetramethyldibenzotetraaza[14]-annulene

Marc D. Walter,^a Rosa Fandos^{a,b} and Richard A. Andersen^{*a}

^a Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National

Laboratory, University of California, Berkeley, California, CA 94720, USA

^b Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La

Mancha, Facultad de Ciencias del Medio Ambiente.

Avd.Carlos III,s/n, 45071 Toledo,Spain

E-mail: raandersen@lbl.gov

Contents:	
1. $Ce(tmtaa)_2^*(C_5H_{12})_{0.5}$	2
2. Ce(tmtaa)(tmtaaH)	21
3. References	27

1. Ce(tmtaa)₂*(C₅H₁₂)_{0.5}

1.1 Labeling Diagram

Figure S1. ORTEP diagram of Ce(tmtaa)₂*(C_5H_{12})_{0.5} (50% probability ellipsoids). The atom labels bearing _2 are symmetry related positions. C45 in the disordered pentane molecule has 0.5 occupancy.

1.2 Experimental Details

Data Collection

A fragment of a block green-like crystal of C_{46.50} H₄₄ Ce N₈ having approximate dimensions of 0.32 x 0.24 x 0.16 mm was mounted on a glass fiber using Paratone N hydrocarbon oil. All measurements were made on a Bruker SMART CCD ¹⁰ CCD area detector with graphite monochromated MoK α radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using the measured positions of 6639 centered reflections with I > $10\sigma(I)$ in the range 2.2 < θ < 24.7° corresponded to a primitive Triclinic cell with dimensions:

a = 11.417(1) Å	$\alpha = 107.720(2)^{\circ}$
b = 11.543(1) Å	$\beta = 90.261(2)^{\circ}$
c = 16.419(2) Å	$\gamma = 107.884(2)^{\circ}$
V = 1950.1(4)Å ³	

For Z = 2 and F.W. = 855.02, the calculated density is 1.456 g/cm^3 .

Analysis of the systematic absences allowed the space group to be uniquely determined to be:

P-1

The data were collected at a temperature of 136(2) K. Frames corresponding to an arbitrary hemisphere of data were collected using ω scans of 0.3° counted for a total of 10 seconds per frame.

Data Reduction

Data were integrated by the program SAINT¹¹ to a maximum θ value of 24.72°. The data were corrected for Lorentz and polarization effects. Data were analyzed for agreement and possible absorption using XPREP¹². An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS¹³. (Tmax = 0.8297, Tmin = 0.6977). Of the 9863 reflections that were collected, 6189 were unique (R_{int} = 0.0425); equivalent reflections were merged. No decay correction was applied.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques². Nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions using a riding model, but not refined. However, no H atoms corresponding to the disordered pentane were included in the refinement. The final cycle of full-matrix least-squares refinement³ was based on 6189 reflections (all data) and 514 variable parameters and converged (largest parameter shift was 0.000 times its esd) with conventional unweighted and weighted agreement factors of:

 $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0468$ for 5527 data with I > $2\sigma(I)$

$$wR_2 = [(\Sigma w (|Fo|^2 - |Fc|^2)^2 / \Sigma w |Fo|^2)]^{1/2} = 0.1238$$

The standard deviation of an observation of unit weight⁴ was 1.046. The weighting scheme was based on counting statistics and included a factor (q = 0.082) to downweight the intense reflections. The maximum and minimum peaks on the final difference Fourier map corresponded to 2.009 and -2.059 $e^{7}/Å^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbel⁸. All calculations were performed using the SHELXTL⁹ crystallographic software package of Bruker Analytical X-ray Systems Inc.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ \text{D}_{\text{calc}} \\ \text{F}_{000} \\ \mu(\text{ MoK}) \end{array}$

Diffractometer Radiation

Detector Position Exposure Time Scan Type θ_{max} No. of Reflections Measured

Corrections

 $C_{46.50}H_{44}CeN_8$ 855.02 block, green 0.32 x 0.24 x 0.16 mm Triclinic primitive a = 11.417(1) Å b = 11.543(1) Å c = 16.419(2) Å α= 107.720(2) ° $\beta = 90.261(2)^{\circ}$ $\gamma = 107.884(2)^{\circ}$ $V = 1950.1(4) Å^{3}$ P-1 2 1.456 g/cm^3 874 1.21 cm⁻¹

B. Intensity Measurements

Bruker SMART CCD MoK(λ = 0.71073 Å) graphite monochromated 60.00 mm 10 seconds per frame. ω (0.3 degrees per frame) 24.72° Total: 9863 Unique: 6189 (R_{int} = 0.0425) Lorentz-polarization Absorption (Tmax = 0.8297, Tmin = 0.6977) C. Structure Solution and Refinement

Structure Solution Refinement Function Minimized

Least Squares Weighting scheme

q-factor Anomalous Dispersion No. Observations (I> 2.00σ (I)) No. Variables Reflection/Parameter Ratio Residuals: R; wR₂; Rall Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map direct (SHELXS-97 (Sheldrick, 1997)) Full-matrix least-squares $\Sigma w(|F_o|^2 - |F_c|^2)^2$

 $w = 1/[\sigma^2(F_o^2) + (qP)^2 + 1.347P]$

where $P = [F_o^2 + 2F_c^2]/3$

0.082 All non-hydrogen atoms 5527 514 10.75 0.0468; 0.1238; 0.0524 1.046 0.000 2.009 e⁻/Å³ -2.059 e⁻/Å³

1.3 Tables

Table 1. Atomic coordinates and $U_{\rm iso}\!/U_{\rm eq}$ and occupancy

atom	Х	У	Z	U_{eq}	Occupancy
C1	0.4781(4)	0.1794(4)	0.1603(3)	0.018(1)	1
C2	0.4776(4)	0.0746(4)	0.1864(3)	0.023(1)	1
C3	0.5835(5)	0.0724(5)	0.2263(3)	0.029(1)	1
C4	0.6917(5)	0.1783(5)	0.2439(3)	0.029(1)	1
C5	0.6932(4)	0.2828(5)	0.2198(3)	0.023(1)	1
C6	0.5888(4)	0.2852(4)	0.1766(3)	0.016(1)	1
C7	0.6607(4)	0.4574(4)	0.1158(3)	0.018(1)	1
C8	0.7709(4)	0.4171(5)	0.0843(3)	0.025(1)	1
C9	0.6445(4)	0.5611(4)	0.0947(3)	0.018(1)	1
C10	0.5419(4)	0.6025(4)	0.1014(3)	0.017(1)	1
C11	0.5473(4)	0.7061(4)	0.0608(3)	0.020(1)	1
C12	0.3326(4)	0.5822(4)	0.1393(3)	0.016(1)	1
C13	0.3261(4)	0.7063(4)	0.1616(3)	0.020(1)	1
C14	0.2142(4)	0.7286(4)	0.1679(3)	0.024(1)	1
C15	0.1056(4)	0.6275(5)	0.1554(3)	0.026(1)	1
C16	0.1092(4)	0.5040(4)	0.1360(3)	0.020(1)	1
C17	0.2209(4)	0.4770(4)	0.1253(3)	0.015(1)	1
C18	0.1618(4)	0.2478(4)	0.0544(3)	0.018(1)	1
C19	0.0508(5)	0.2431(5)	0.0008(3)	0.028(1)	1
C20	0.1853(4)	0.1307(4)	0.0365(3)	0.017(1)	1
C21	0.2880(4)	0.1067(4)	0.0665(3)	0.017(1)	1
C22	0.3024(4)	-0.0222(4)	0.0197(3)	0.025(1)	1
C23	0.2177(4)	0.2088(4)	0.2875(3)	0.020(1)	1
C24	0.1653(4)	0.0748(4)	0.2593(3)	0.025(1)	1
C25	0.0446(5)	0.0146(5)	0.2210(3)	0.029(1)	1
C26	-0.0244(5)	0.0876(5)	0.2070(3)	0.031(1)	1
C27	0.0252(4)	0.2196(5)	0.2313(3)	0.026(1)	1
C28	0.1455(4)	0.2828(4)	0.2741(3)	0.020(1)	1
C29	0.1612(4)	0.5072(5)	0.3392(3)	0.024(1)	1
C30	0.0315(5)	0.4724(6)	0.3669(4)	0.037(1)	1
C31	0.2304(5)	0.6377(5)	0.3659(3)	0.027(1)	1
C32	0.3567(4)	0.6958(4)	0.3641(3)	0.024(1)	1
033	0.4081(5)	0.8405(5)	0.4110(4)	0.038(1)	1
034	0.5591(4)	0.6816(4)	0.3266(3)	0.021(1)	1
035	0.6197(5)	0.7941(5)	0.3067(3)	0.032(1)	1
	0.7447(5)	0.8297(5)	0.3001(4)	0.041(2)	1
C37	0.8110(3)	0.7008(0)	0.3111(3)	0.027(1)	1
C38	0.7303(3)	0.0430(5)	0.3282(3)	0.031(1)	1
C39	0.6295(4)	0.6049(4)	0.3370(3)	0.021(1)	1
C40	0.5954(4)	0.4441(4)	0.4002(3)	0.020(1)	1
C41	0.7090(5)	0.0100(0)	0.4700(3)	0.030(1)	1
C42	0.3101(3)	0.3314(3) 0.2560(4)	0.4211(3) 0.2844(3)	0.020(1)	1
C43	0.3903(4)	0.2509(4)	0.3044(3) 0.4237(3)	0.022(1)	1
C45	0.0011(0)	0.1330(3)	0.4237(3)	0.034(1)	0.50
C46	0.3204(13)	0.1003(17)	0.4010(10)	0.073(0)	1
C47	1 0088(12)	0.1070(13) 0.0502(14)	0.4003(0)	0.143(0)	1
N1	0.3723(3)	0.0002(14) 0.1964(3)	0 1285(2)	0.016(1)	1
N2	0.5791(3)	0.3023(3)	0 1569(2)	0.012(1)	1
N3	0 4436(3)	0.5510(3)	0.1371(2)	0.013(1)	1
	0.1.00(0)	0.00.0(0)	0.1011(2)	0.0.0(1)	

N4	0.2353(3)	0.3551(3)	0.1103(2)	0.014(1)	1
N5	0.3418(3)	0.2770(3)	0.3213(2)	0.018(1)	1
N6	0.5600(3)	0.4860(3)	0.3479(2)	0.019(1)	1
N7	0.4291(4)	0.6296(4)	0.3278(2)	0.020(1)	1
N8	0.2087(3)	0.4173(4)	0.2978(2)	0.018(1)	1
Ce1	0.3973(1)	0.4121(1)	0.2285(1)	0.015(1)	1

 $U_{\mbox{\scriptsize eq}}$ is defined as one third of the orthogonalized $U_{\mbox{\scriptsize ij}}$ tensor

Table 2. Anisotropic Displacement Parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C1	0.018(2)	0.019(2)	0.021(2)	0.009(2)	0.007(2)	0.011(2)
C2	0.020(2)	0.022(2)	0.034(3)	0.016(2)	0.009(2)	0.007(2)
C3	0.030(3)	0.031(3)	0.039(3)	0.023(2)	0.005(2)	0.016(2)
C4	0.023(3)	0.038(3)	0.037(3)	0.022(2)	0.004(2)	0.016(2)
C5	0.018(2)	0.027(3)	0.029(2)	0.014(2)	0.005(2)	0.010(2)
C6	0.016(2)	0.018(2)	0.021(2)	0.010(2)	0.007(2)	0.009(2)
C7	0.010(2)	0.022(2)	0.021(2)	0.009(2)	0.002(2)	0.006(2)
C8	0.015(2)	0.028(3)	0.037(3)	0.019(2)	0.007(2)	0.007(2)
C9	0.011(2)	0.021(2)	0.029(2)	0.017(2)	0.007(2)	0.004(2)
C10	0.018(2)	0.014(2)	0.019(2)	0.009(2)	0.000(2)	0.004(2)
C11	0.022(2)	0.020(2)	0.024(2)	0.017(2)	0.008(2)	0.007(2)
C12	0.012(2)	0.025(2)	0.016(2)	0.012(2)	0.003(2)	0.008(2)
C13	0.019(2)	0.018(2)	0.025(2)	0.012(2)	0.003(2)	0.004(2)
C14	0.028(3)	0.019(2)	0.036(3)	0.017(2)	0.006(2)	0.014(2)
C15	0.017(2)	0.035(3)	0.036(3)	0.019(2)	0.005(2)	0.015(2)
C16	0.010(2)	0.025(2)	0.029(2)	0.013(2)	0.002(2)	0.007(2)
C17	0.013(2)	0.021(2)	0.015(2)	0.012(2)	0.001(2)	0.007(2)
C18	0.010(2)	0.027(3)	0.022(2)	0.015(2)	0.007(2)	0.006(2)
C19	0.025(3)	0.028(3)	0.030(3)	0.008(2)	-0.006(2)	0.008(2)
C20	0.015(2)	0.017(2)	0.021(2)	0.009(2)	0.004(2)	0.002(2)
C21	0.018(2)	0.020(2)	0.020(2)	0.014(2)	0.010(2)	0.007(2)
C22	0.025(3)	0.021(2)	0.031(3)	0.010(2)	0.005(2)	0.008(2)
C23	0.020(2)	0.025(2)	0.018(2)	0.012(2)	0.006(2)	0.005(2)
C24	0.029(3)	0.024(3)	0.025(2)	0.011(2)	0.012(2)	0.008(2)
C25	0.034(3)	0.023(3)	0.025(3)	0.011(2)	0.012(2)	-0.001(2)
C26	0.024(3)	0.035(3)	0.025(3)	0.009(2)	0.008(2)	-0.002(2)
C27	0.021(2)	0.035(3)	0.025(2)	0.000(2)	0.010(2)	0.011(2)
C28	0.020(2)	0.024(2)	0.019(2)	0.011(2)	0.010(2)	0.007(2)
C29	0.020(2)	0.036(3)	0.024(2)	0.015(2)	0.006(2)	0.016(2)
C30	0.022(3)	0.045(3)	0.039(3)	0.004(3)	0.007(2)	0.013(3)
C31	0.030(3)	0.028(3)	0.030(3)	0.010(2)	0.003(2)	0.020(2)
C32	0.030(3)	0.023(3)	0.023(2)	0.010(2)	-0.004(2)	0.011(2)
C33	0.041(3)	0.027(3)	0.046(3)	0.007(2)	0.000(3)	0.017(3)
C34	0.020(2)	0.023(2)	0.019(2)	0.012(2)	-0.003(2)	0.002(2)
C35	0.035(3)	0.024(3)	0.038(3)	0.019(2)	-0.006(2)	0.001(2)
C36	0.034(3)	0.038(3)	0.039(3)	0.021(3)	-0.007(3)	-0.013(3)
C37	0.018(3)	0.025(3)	0.028(3)	0.012(2)	-0.003(2)	-0.010(2)
C38	0.024(3)	0.044(3)	0.023(2)	0.011(2)	-0.001(2)	0.011(2)
C39	0.018(2)	0.023(2)	0.021(2)	0.009(2)	-0.002(2)	0.003(2)
C40	0.021(2)	0.027(3)	0.020(2)	0.010(2)	0.004(2)	0.016(2)
C41	0.028(3)	0.037(3)	0.029(3)	0.013(2)	-0.002(2)	0.013(2)
C42	0.034(3)	0.032(3)	0.025(2)	0.017(2)	0.004(2)	0.020(2)
C43	0.029(3)	0.021(2)	0.025(2)	0.016(2)	0.011(2)	0.013(2)
C44	0.039(3)	0.035(3)	0.036(3)	0.026(2)	0.006(2)	0.009(2)
C45	0.116(15)	0.072(11)	0.040(8)	0.030(8)	0.050(9)	0.032(10)
C46	0.087(8)	0.180(14)	0.088(8)	-0.053(9)	0.026(7)	0.033(9)
C47	0.048(6)	0.20(2)	0.121(13)	-0.090(12)	0.044(6)	-0.027(10)
N1	0.014(2)	0.015(2)	0.023(2)	0.013(2)	0.007(2)	0.006(2)
N2	0.009(2)	0.017(2)	0.020(2)	0.009(2)	0.003(2)	0.005(2)
N3	0.013(2)	0.015(2)	0.020(2)	0.016(2)	0.007(2)	0.006(2)
N4	0.012(2)	0.015(2)	0.020(2)	0.010(2)	0.007(2)	0.005(2)

N5	0.020(2)	0.017(2)	0.021(2)	0.015(2)	0.009(2)	0.004(2)
N6	0.017(2)	0.018(2)	0.023(2)	0.011(2)	0.004(2)	0.005(2)
N7	0.022(2)	0.017(2)	0.025(2)	0.012(2)	0.001(2)	0.007(2)
N8	0.013(2)	0.022(2)	0.021(2)	0.010(2)	0.006(2)	0.006(2)
Ce1	0.014(1)	0.018(1)	0.019(1)	0.012(1)	0.003(1)	0.006(1)

The general temperature factor expression:

 $exp(-2\Pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 3. Bond Lengths(Å)	

atom	atom	distance	atom	atom	distance
C1	C2	1.399(6)	C1	N1	1.405(6)
C1	C6	1.418(6)	C1	Ce1	3.004(4)
C2	C3	1.383(7)	C2	H2	0.9500
C3	C4	1.399(7)	C3	H3	0.9500
C4	C5	1 374(7)	C4	H4	0.9500
C5	00 C6	1 306(6)	04 C5	H5	0.0000
C6	N0	1.000(0)	00		0.000(4)
		1.400(0)	C0	Cel	2.900(4)
07		1.332(5)	07	09	1.405(6)
67		1.512(6)	68	H8A	0.9800
C8	H8B	0.9800	C8	H8C	0.9800
C9	C10	1.389(6)	C9	H9	0.9500
C10	N3	1.328(5)	C10	C11	1.523(6)
C11	H11A	0.9800	C11	H11B	0.9800
C11	H11C	0.9800	C12	C13	1.392(6)
C12	N3	1.418(5)	C12	C17	1.425(6)
C12	Ce1	3.030(4)	C13	C14	1.377(6)
C13	H13	0.9500	C14	C15	1.380(7)
C14	H14	0.9500	C15	C16	1.377(6)
C15	H15	0.9500	C16	C17	1 402(6)
C16	H16	0.0000	C17	N4	1.402(0) 1.414(5)
C17	Co1	3.026(4)	C18	N4	1 220(6)
C18	C20	1 403(6)	C18	C10	1.520(0)
C10		0.0000	C10		0.0900
C19		0.9600	C19 C20		0.9000
019		0.9800	020	621	1.404(6)
020	H20	0.9500	621	IN 1	1.331(6)
C21	622	1.512(6)	622	HZZA	0.9800
022	H22B	0.9800	022	H22C	0.9800
C23	C24	1.400(6)	C23	N5	1.406(6)
C23	C28	1.415(6)	C23	Ce1	3.016(4)
C24	C25	1.383(7)	C24	H24	0.9500
C25	C26	1.381(7)	C25	H25	0.9500
C26	C27	1.379(7)	C26	H26	0.9500
C27	C28	1.407(7)	C27	H27	0.9500
C28	N8	1.422(6)	C28	Ce1	3.019(4)
C29	N8	1.324(6)	C29	C31	1.397(7)
C29	C30	1.520(7)	C30	H30A	0.9800
C30	H30B	0.9800	C30	H30C	0.9800
C31	C32	1.396(7)	C31	H31	0.9500
C32	N7	1 319(6)	C32	C33	1 529(7)
C33	H33A	0.9800	C33	H33B	0.9800
C33	H33C	0.9800	C34	C35	1 407(6)
C34	C39	1 413(6)	C34	N7	1 422(6)
C24	Co1	2 012(4)	C25	C26	1.72(0)
C34		0.0500	C36	C37	1.373(0)
C35		0.9500	C30	C37	1.300(0)
030	П00 1107	0.9500	037	030	1.309(7)
037	H3/	0.9500	C38	039	1.405(7)
U38	H38	0.9500	039	NG	1.419(6)
039	Ce1	3.016(4)	C40	NG Q 4 4	1.327(6)
040	C42	1.399(7)	C40	C41	1.513(7)
C41	H41A	0.9800	C41	H41B	0.9800
C41	H41C	0.9800	C42	C43	1.388(7)

C42	H42	0.9500	C43	N5	1.333(6)
C43	C44	1.512(6)	C44	H44A	0.9800
C44	H44B	0.9800	C44	H44C	0.9800
C45	C46	1.14(2)	C46	C47	1.53(2)
C47	C47#1	1.45(4)	N1	Ce1	2.460(4)
N2	Ce1	2.428(3)	N3	Ce1	2.460(3)
N4	Ce1	2.462(4)	N5	Ce1	2.450(3)
N6	Ce1	2.449(4)	N7	Ce1	2.456(4)
N8	Ce1	2.448(4)			

Table 4.	Bond Angles(°)	

atom	atom	atom	angle	atom	atom	atom	angle
C2 N1 N1 C3 C1 C2 C5 C3 C4 C5 N2 N2 N2 N2 C9 C7 C7 H8B	C1 C1 C2 C2 C3 C4 C5 C6 C6 C6 C6 C7 C7 C8 C8 C8	N1 C6 Ce1 H2 H3 C3 H4 H5 N2 C1 Ce1 C9 C8 H8B H8C H8C	124.7(4) 115.8(4) 54.1(2) 121.0(4) 119.5 120.1 120.0(4) 120.0 119.4 124.7(4) 115.8(4) 53.7(2) 121.8(4) 116.8(4) 109.5 109.5 109.5	C2 C2 C6 C3 C2 C4 C5 C4 C5 C5 C5 C1 N2 C7 H8A H8A C10	C1 C1 C2 C3 C3 C4 C5 C5 C6 C6 C6 C6 C7 C8 C8 C8 C9	C6 Ce1 Ce1 H2 C4 H3 H4 C6 H5 C1 Ce1 Ce1 Ce1 C8 H8A H8B H8C C7	119.0(4) 136.3(3) 75.3(2) 119.5 119.8(4) 120.1 120.0 121.3(4) 119.4 119.0(4) 134.3(3) 77.2(2) 121.2(4) 109.5 109.5 109.5 128.6(4)
H8B C10 N3 C9 C10 C10 H11B C13 C13 C17 C14 C13 C15 C16 C15 C17	C8 C9 C10 C11 C11 C11 C12 C12 C12 C12 C12 C13 C14 C14 C14 C15 C16 C16	H8C H9 C9 C11 H11B H11C H11C C17 Ce1 Ce1 H13 C15 H14 H15 C17 H16	109.5 115.7 122.2(4) 115.2(4) 109.5 109.5 109.5 118.9(4) 137.7(3) 76.2(2) 119.3 120.2(4) 119.9 120.1 121.5(4) 119.2	C10 C7 N3 C10 H11A H11A C13 N3 C14 C12 C13 C16 C14 C15 C16	C9 C9 C10 C11 C11 C12 C12 C12 C12 C12 C13 C13 C14 C15 C15 C16 C17	C7 H9 C11 H11A H11B H11C N3 C17 Ce1 C12 H13 H14 C14 H15 H16 N4	128.6(4) 115.7 122.5(4) 109.5 109.5 109.5 125.1(4) 115.7(4) 53.29(19) 121.3(4) 119.3 119.9 119.8(4) 120.1 119.2 125.8(4)
C16 C16 C12 N4 C18 H19A H19A C18 C21 N1 C21 H22A H22A H22A C24 N5 N5 C25 C23	C17 C17 C17 C18 C19 C19 C19 C20 C20 C20 C21 C22 C22 C22 C22 C22 C22 C23 C23 C23 C23	C12 Ce1 Ce1 C19 H19A H19B H19C C21 H20 C22 H22A H22B H22C N5 C28 Ce1 C23 H24	118.1(4) 137.0(3) 76.5(2) 122.9(4) 109.5 109.5 109.5 128.8(4) 115.6 122.2(4) 109.5 109.5 109.5 109.5 109.5 109.5 125.0(4) 116.2(4) 53.3(2) 121.4(5) 119.3	N4 N4 N4 C20 C18 C18 H19B C18 N1 C20 C21 C21 H22B C24 C24 C24 C24 C25 C26	C17 C17 C18 C19 C19 C19 C19 C20 C21 C21 C22 C22 C22 C22 C22 C22 C23 C23 C23 C23	C12 Ce1 C20 C19 H19B H19C H19C H20 C20 C22 H22B H22C H22C H22C C28 Ce1 Ce1 H24 C24	115.7(4) 53.5(2) 122.1(4) 109.5 109.5 109.5 109.5 115.6 121.4(4) 116.2(4) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 118.5(4) 137.8(3) 76.5(2) 119.3 119.5(5)

C26	C25	H25	120.2	C24	C25	H25	120.2
C27	C26	C25	120.8(5)	C27	C26	H26	119.6
C25	C26	H26	119.6	C26	C27	C28	120.4(5)
C26	C27	H27	119.8	C28	C27	H27	119.8 ໌
C27	C28	C23	119.2(4)	C27	C28	N8	125.3(4)
C23	C28	N8	115.1(4)	C27	C28	Ce1	136.5(3)
C23	C28	Ce1	76.3(2)	N8	C28	Ce1	53.2(2)
N8	C29	C31	122.1(4)	N8	C29	C30	121.3(4)
C31	C29	C30	116.4(4)	C29	C30	H30A	109.5
C29	C30	H30B	109.5	H30A	C30	H30B	109.5
C29	C30	H30C	109.5	H30A	C30	H30C	109.5
H30B	C30	H30C	109.5	C32	C31	C29	129.0(4)
C32	C31	H31	115.5	C29	C31	H31	115.5
N7	C32	C31	122.4(4)	N7	C32	C33	121.6(4)
C31	C32	C33	116.0(4)	C32	C33	H33A	109.5
C32	C33	H33B	109.5	H33A	C33	H33B	109.5
C32	C33	H33C	109.5	H33A	C33	H33C	109.5
H33B	C33	H33C	109.5	C35	C34	C39	118.3(4)
C35	C34	N7	125.6(4)	C39	C34	N7	115.8(4)
C35	C34	Ce1	136.3(3)	C39	C34	Ce1	76.6(3)
N7	C34	Ce1	53.8(2)	C36	C35	C34	120.8(5)
C36	C35	H35	119.6	C34	C35	H35	119.6
C37	C36	C35	120.5(5)	C37	C36	H36	119.8
C35	C36	H36	119.8	C36	C37	C38	121.1(5)
C36	C37	H37	119.4	C38	C37	H37	119.4
C37	C38	C39	120.4(5)	C37	C38	H38	119.8
C39	C38	H38	119.8	C38	C39	C34	118.9(4)
C38	C39	N6	125.5(4)	C34	C39	N6	115.1(4)
C38	C39	Ce1	136.2(3)	C34	C39	Ce1	76.3(2)
N6	C39	Ce1	53.3(2)	N6	C40	C42	121.2(4)
N6	C40	C41	122.7(4)	C42	C40	C41	115.9(4)
C40	C41	H41A	109.5	C40	C41	H41B	109.5
H41A	C41	H41B	109.5	C40	C41	H41C	109.5
H41A	C41	H41C	109.5	H41B	C41	H41C	109.5
C43	C42	C40	128.6(4)	C43	C42	H42	115.7
C40	C42	H42	115.7	N5	C43	C42	122.5(4)
N5	C43	C44	121.0(4)	C42	C43	C44	116.3(4)
C43	C44	H44A	109.5	C43	C44	H44B	109.5
H44A	C44	H44B	109.5	C43	C44	H44C	109.5
H44A	C44	H44C	109.5	H44B	C44	H44C	109.5
C45	C46	C47	105.7(15)	C47#1	C47	C46	114.3(13)
C21	N1	C1	124.3(4)	C21	N1	Ce1	137.1(3)
C1	N1	Ce1	98.3(3)	C7	N2	C6	123.9(4)
C7	N2	Ce1	137.3(3)	C6	N2	Ce1	98.6(2)
C10	N3	C12	124.5(3)	C10	N3	Ce1	135.8(3)
C12	N3	Ce1	99.2(2)	C18	N4	C17	124.0(4)
C18	N4	Ce1	136.2(3)	C17	N4	Ce1	99.0(2)
C43	N5	C23	123.4(4)	C43	N5	Ce1	137.2(3)
C23	N5	Ce1	99.3(3)	C40	N6	C39	122.5(4)
C40	N6	Ce1	138.4(3)	C39	N6	Ce1	99.0(3)
C32	N7	C34	125.4(4)	C32	N7	Ce1	135.5(3)
C34	N7	Ce1	98.4(3)	C29	N8	C28	124.6(4)
C29	N8	Ce1	136.1(3)	C28	N8	Ce1	99.1(3)
N2	Ce1	N8	176.39(11)	N2	Ce1	N6	76.58(12)
N8	Ce1	N6	104.61(12)	N2	Ce1	N5	112.41(12)
N8	Ce1	N5	65.22(12)	N6	Ce1	N5	69.90(12)
N2	Ce1	N7	112.80(12)	N8	Ce1	N7	70.69(13)

N6	Ce1	N7	64.95(12)	N5	Ce1	N7	103.33(12)
N2	Ce1	N1	65.42(12)	N8	Ce1	N1	111.09(12)
N6	Ce1	N1	113.98(12)	N5	Ce1	N1	77.40(12)
N7	Ce1	N1	178.20(11)	N2	Ce1	N3	70.47(12)
N8	Ce1	N3	111.90(12)	N6	Ce1	N3	111.44(12)
N5	Ce1	N3	177.12(10)	N7	Ce1	N3	75.32(12)
N1	Ce1	N3	104.03(12)	N2	Ce1	N4	104.33(11)
N8	Ce1	N4	74.75(12)	N6	Ce1	N4	175.64(11)
N5	Ce1	N4	113.26(12)	N7	Ce1	N4	110.97(12)
N1	Ce1	N4	70.06(12)	N3	Ce1	N4	65.25(11)
N2	Ce1	C6	27.78(12)	N8	Ce1	C6	149.26(12)
N6	Ce1	C6	70.04(12)	N5	Ce1	C6	85.10(12)
N7	Ce1	C6	127.23(12)	N1	Ce1	C6	51.07(12)
N3	Ce1	C6	97.74(11)	N4	Ce1	C6	112.78(12)
N2	Ce1	C1	50.89(12)	N8	Ce1	C1	125.58(12)
N6	Ce1	C1	86.76(12)	N5	Ce1	C1	69.94(12)
N7	Ce1	C1	151.11(12)	N1	Ce1	C1	27.56(12)
N3	Ce1	C1	112.49(12)	N4	Ce1	C1	97.12(12)
C6	Ce1	C1	27.42(11)	N2	Ce1	C34	85.29(12)
N8	Ce1	C34	98.11(12)	N6	Ce1	C34	50.63(12)
N5	Ce1	C34	112.00(12)	N7	Ce1	C34	27.85(13)
N1	Ce1	C34	150.35(12)	N3	Ce1	C34	68.00(12)
N4	Ce1	C34	125.05(12)	C6	Ce1	C34	100.45(12)
C1	Ce1	C34	126.88(12)	N2	Ce1	C23	125.95(12)
N8	Ce1	C23	50.69(12)	N6	Ce1	C23	96.83(12)
N5	Ce1	C23	27.39(12)	N7	Ce1	C23	112.01(12)
N1	Ce1	C23	69.39(12)	N3	Ce1	C23	150.71(12)
N4	Ce1	C23	86.10(12)	C6	Ce1	C23	99.03(12)
C1	Ce1	C23	75.43(12)	C34	Ce1	C23	131.32(12)

Table 5.	Torsion	Angles((°)	

atom	atom	atom	atom	angle	atom	atom	atom	atom	angle
N1	C1	C2	C3	-172.3(4)	C6	C1	C2	C3	-0.9(7)
Ce1	C1	C2	C3	-100.2(5)	C1	C2	C3	C4	2.3(8)
C2	C3	C4	C5	-1.4(8)	C3	C4	C5	C6	-0.9(8)
C4	C5	C6	N2	173.8(4)	C4	C5	C6	C1	2.2(7)
C4	C5	C6	Ce1	103.1(5)	C2	C1	C6	C5	-1.3(6)
N1	C1	C6	C5	170 8(4)	Ce1	C1	C6	C5	133 9(4)
C2	C1	C6	N2	-173 6(4)	N1	C1	C6	N2	-1 5(6)
	C1	00 C6	N2	-38 4(3)	C2	C1	00 C6		-135 2(4)
N1	C1	00 C6		-30.4(3)	N2	01		C10	-133.2(4)
	01	C0	CE1	30.9(3)			C10	NO	-0.9(7)
		040	C10	107.2(4)		040	010		3.0(7)
	040	010		-171.3(4)	IN3	012	013	014	-175.4(4)
C17	C12	C13	C14	-1.9(6)	Ce1	C12	C13	C14	-103.7(5)
C12	C13	C14	C15	2.7(7)	C13	C14	C15	C16	-0.5(7)
C14	C15	C16	C17	-2.3(7)	C15	C16	C17	N4	176.1(4)
C15	C16	C17	C12	3.0(6)	C15	C16	C17	Ce1	103.7(5)
C13	C12	C17	C16	-0.9(6)	N3	C12	C17	C16	173.2(4)
Ce1	C12	C17	C16	136.5(4)	C13	C12	C17	N4	-174.7(4)
N3	C12	C17	N4	-0.6(5)	Ce1	C12	C17	N4	-37.4(3)
C13	C12	C17	Ce1	-137.3(4)	N3	C12	C17	Ce1	36.8(3)
N4	C18	C20	C21	-5.2(7)	C19	C18	C20	C21	171.2(4)
C18	C20	C21	N1	9.7(7)	C18	C20	C21	C22	-165.5(4)
N5	C23	C24	C25	-175.2(4)	C28	C23	C24	C25	-1.7(7) (
Ce1	C23	C24	C25	-103.5(5)	C23	C24	C25	C26	$2.7(7)^{\prime}$
C24	C25	C26	C27	-0.5(7)	C25	C26	C27	C28	-2.7(7)
C26	C27	C28	C23	3 6(7)	C26	C27	C28	N8	176.3(4)
C26	C27	C28	Ce1	104 9(5)	C24	C23	C28	C27	-1 4(6)
N5	C23	C28	C27	172 6(4)		C23	C28	C27	136 0(4)
C24	C23	C28	NR	-174.8(4)	N5	C23	C20	NR	-0.8(6)
Co1	C23	C20	NQ	-174.0(4)	C24	C23	C20		-0.0(0)
NE	023	C20		-37.4(3)		C20	C24	C22	-137.4(4)
C20	023	020	Cer	30.0(3)		C29	C31	03Z	-1.1(0)
030	029	000	032	107.2(5)	029	001	032		0.0(8)
629	031	032	033	-170.8(5)	039	034	035	036	-1.3(7)
N/	C34	035	C36	-174.3(5)	Ce1	C34	035	C36	-101.9(6)
C34	C35	C36	C37	1.1(8)	C35	C36	C37	C38	0.7(8)
C36	C37	C38	C39	-2.3(8)	C37	C38	C39	C34	2.0(7)
C37	C38	C39	N6	174.2(4)	C37	C38	C39	Ce1	102.6(6)
C35	C34	C39	C38	-0.2(6)	N7	C34	C39	C38	173.4(4)
Ce1	C34	C39	C38	135.5(4)	C35	C34	C39	N6	-173.2(4)
N7	C34	C39	N6	0.5(6)	Ce1	C34	C39	N6	-37.4(3)
C35	C34	C39	Ce1	-135.8(4)	N7	C34	C39	Ce1	37.9(3)
N6	C40	C42	C43	-8.1(8)	C41	C40	C42	C43	167.8(5)
C40	C42	C43	N5	8.1(8)	C40	C42	C43	C44	-168.2(5)
C45	C46	C47	C47#1	-177.0(17)	C20	C21	N1	C1	-178.8(4)
C22	C21	N1	C1	-3.9(6) ໌	C20	C21	N1	Ce1	8.1(7) `́
C22	C21	N1	Ce1	-177.0(3)	C2	C1	N1	C21	-49.4(6)
C6	C1	N1	C21	138.9(4)	Ce1	C1	N1	C21	-175.2(5)
C2	C1	N1	Ce1	125.8(4)	C6	C1	N1	Ce1	-45 8(4)
C9	C7	N2	C6	177 6(4)	C8	C7	N2	C6	1 7(7)
C9	C7	N2	Ce1	-8 6(7)	C8	C7	N2	C≏1	175 5(3)
C5	C6	N2	C7	52 7(6)	C1	07 C6	N2	C7	-135 5(4)
	C6	N2	C7	175 8(5)	C5	00	N2		-123 0(4)
	00	INZ I	01	173.0(3)	05	00	INZ	Cer	-123.0(4)

C1	C6	N2	Ce1	48.7(4)	C9	C10	N3	C12	-174.6(4)
C11	C10	N3	C12	2.1(6)	C9	C10	N3	Ce1	14.9(7)
C11	C10	N3	Ce1	-168.3(3)	C13	C12	N3	C10	-46.1(6)
C17	C12	N3	C10	140.2(4)	Ce1	C12	N3	C10	-173.3(5)
C13	C12	N3	Ce1	127 2(4)	C17	C12	N3	Ce1	-46 5(4)
C20	C18	N4	C17	174 8(4)	C19	C18	N4	C17	-1 3(6)
C20	C18	N4	Ce1	-17 6(6)	C19	C18	N4	Ce1	166 3(3)
C16	C17	N4	C18	45 3(6)	C12	C17	N4	C18	-141 4(4)
	C17	N/	C18	$171 \ 3(A)$	C16	C17	N/		-1260(4)
C12	C17	N/A		171.3(4)	C/2	C/3	N5	C23	-120.0(4)
C14	C12	NG	001	47.3(4)	C42	C43	NE	Co1	-175.2(4)
044	043	C/I	023	0.9(7)	042	043	GUI	Cer	(1,0(1))
044	043	CVI		-170.4(3)	024	023	CVI	043	-50.8(7)
028	023		C43	135.6(4)	Cer	023		C43	-178.1(5)
0.44	023	CVI	Cer	127.3(4)	0.28	023	CVI	Cer	-46.3(4)
042	C40	N6	039	174.9(4)	C41	C40	N6	039	-0.7(7)
C42	C40	N6	Ce1	-7.5(7)	C41	C40	N6	Ce1	176.8(3)
C38	C39	N6	C40	53.4(7)	C34	C39	N6	C40	-134.2(4)
Ce1	C39	N6	C40	178.4(5)	C38	C39	N6	Ce1	-125.0(4)
C34	C39	N6	Ce1	47.4(4)	C31	C32	N7	C34	-177.4(4)
C33	C32	N7	C34	-0.7(7)	C31	C32	N7	Ce1	14.9(7)
C33	C32	N7	Ce1	-168.5(3)	C35	C34	N7	C32	-46.0(7)
C39	C34	N7	C32	140.9(5)	Ce1	C34	N7	C32	-171.4(5)
C35	C34	N7	Ce1	125.4(4)	C39	C34	N7	Ce1	-47.8(4)
C31	C29	N8	C28	175.7(4)	C30	C29	N8	C28	1.0(7)
C31	C29	N8	Ce1	-11.6(7)	C30	C29	N8	Ce1	173.8(3)
C27	C28	N8	C29	49.5(6)	C23	C28	N8	C29	-137.6(4)
Ce1	C28	N8	C29	174.9(5)	C27	C28	N8	Ce1	-125.5(4)
C23	C28	N8	Ce1	47.4(4)	C7	N2	Ce1	N8	148.1(15)
C6	N2	Ce1	N8	-37.1(18)	C7	N2	Ce1	N6	-102.3(4)
C6	N2	Ce1	N6	72.5(3)	C7	N2	Ce1	N5	-163.5(4)
C6	N2	Ce1	N5	11.3(3)	C7	N2	Ce1	N7	-47.2(4)
C6	N2	Ce1	N7	127.6(2)	C7	N2	Ce1	N1	133.1(4)
C6	N2	Ce1	N1	-52 1(2)	C7	N2	Ce1	N3	16 7(4)
C6	N2	Ce1	N3	-168 6(3)	C7	N2	Ce1	N4	73 3(4)
C6	N2	Ce1	N4	-111 9(3)	C7	N2	Ce1	C6	-174 8(6)
C7	N2	Ce1	C1	160 9(5)	C6	N2	Ce1	C1	-24 3(2)
C7	N2	Ce1	C34	-51 7(4)	C6	N2	Ce1	C34	123 1(3)
C7	N2		C23	169 0(4)	C6	N2		C23	-16 2(3)
C20			N2	-175 0(15)	C28			N2	-20(18)
C20	NQ		NG	75 3(1)	C20	NQ		NG	-2.0(10)
C29			N6	134 5(5)	C20	NQ		N6	-515(3)
C29	NO		NZ	104.0(3)	C20	NO		N7	-31.3(3)
C29			IN7 N14	19.0(4)	C20			IN7 N14	-107.0(3)
C29				-101.3(4)	020				12.7(3)
029		Cel	INJ NIA	-45.5(5)	028		Cel		128.5(2)
029		Cer	N4	-100.2(4)	028		Cer	IN4	73.7(3)
029	IN8	Cel	06	150.7(4)	028	IN8	Cel	6	-35.3(4)
029	N8	Ce1	C1	1/1.9(4)	C28	N8	Ce1	C1	-14.1(3)
C29	N8	Cel	034	24.0(4)	C28	N8	Ce1	C34	-162.0(3)
C29	N8	Ce1	C23	162.2(5)	C28	N8	Ce1	C23	-23.9(2)
C40	N6	Ce1	N2	-106.8(5)	C39	N6	Ce1	N2	71.1(3)
C40	N6	Ce1	N8	69.7(5)	C39	N6	Ce1	N8	-112.4(3)
C40	N6	Ce1	N5	13.5(4)	C39	N6	Ce1	N5	-168.6(3)
C40	N6	Ce1	N7	129.8(5)	C39	N6	Ce1	N7	-52.3(3)
C40	N6	Ce1	N1	-51.8(5)	C39	N6	Ce1	N1	126.1(3)
C40	N6	Ce1	N3	-169.2(4)	C39	N6	Ce1	N3	8.7(3)
C40	N6	Ce1	N4	150.6(12)	C39	N6	Ce1	N4	-31.4(15)
C40	N6	Ce1	C6	-78.5(5)	C39	N6	Ce1	C6	99.4(3)

C40	N6	Ce1	C1	-56.3(5)	C39	N6	Ce1	C1	121.6(3)
C40	N6	Ce1	C34	158.2(5)	C39	N6	Ce1	C34	-23.9(2)
C40	N6	Ce1	C23	18.6(5)	C39	N6	Ce1	C23	-163.5(3)
C43	N5	Ce1	N2	51.9(5)	C23	N5	Ce1	N2	-125.8(3)
C43	N5	Ce1	N8	-131 1(5)	C23	N5	Ce1	N8	51 3(3)
C43	N5	Ce1	N6	-13 4(4)	C23	N5	Ce1	N6	169 0(3)
C43	N5	Ce1	N7	-70.0(5)	C23	N5	Ce1	N7	112 3(3)
C43	N5	Ce1	N1	108 3(5)	C23	N5	Ce1	N1	-69 4(3)
C/3	N5		N3	-132(2)	C23	N5		N3	51(2)
C/3	N5		N/A	160.0(4)	C23	N5		N/	-7.8(3)
C43	N5		C6	57 1(4)	C23	N5		06	-7.0(3)
C43	N5 NE		C0	57.1(4)	C23	NG NE		C0	-120.3(3)
C43				00.0(4)	023				-97.0(3)
C43			C34	-42.2(3) 177.7(6)	C23			C34	140.2(3)
043		Cer	C23	177.7(6)	032		Cer	INZ	160.4(4)
034		Cel	NZ	-9.6(3)	032		Cel	IN8	-20.7(4)
034	N7	Ce1	N8	169.4(3)	032	N7	Ce1	N6	-138.0(5)
C34	N7	Ce1	N6	52.1(2)	C32	N/	Ce1	N5	-78.0(4)
C34	N7	Ce1	N5	112.1(2)	C32	N7	Ce1	N1	168(3)
C34	N7	Ce1	N1	-2(3)	C32	N7	Ce1	N3	99.4(4)
C34	N7	Ce1	N3	-70.5(2)	C32	N7	Ce1	N4	43.7(5)
C34	N7	Ce1	N4	-126.2(2)	C32	N7	Ce1	C6	-172.0(4)
C34	N7	Ce1	C6	18.1(3)	C32	N7	Ce1	C1	-150.5(4)
C34	N7	Ce1	C1	39.6(4)	C32	N7	Ce1	C34	169.9(6)
C32	N7	Ce1	C23	-50.7(5)	C34	N7	Ce1	C23	139.4(2)
C21	N1	Ce1	N2	-134.3(4)	C1	N1	Ce1	N2	51.5(2)
C21	N1	Ce1	N8	46.7(4)	C1	N1	Ce1	N8	-127.5(2)
C21	N1	Ce1	N6	164.6(4)	C1	N1	Ce1	N6	-9.6(3)
C21	N1	Ce1	N5	103.6(4)	C1	N1	Ce1	N5	-70.6(2)
C21	N1	Ce1	N7	-142(3)	C1	N1	Ce1	N7	43(3)
C21	N1	Ce1	N3	-73.9(4)	C1	N1	Ce1	N3	111.9(2)
C21	N1	Ce1	N4	-17.2(4)	C1	N1	Ce1	N4	168.6(3)
C21	N1	Ce1	C6	-162.5(5)	C1	N1	Ce1	C6	23.3(2)
C21	N1	Ce1	C1	174.2(6)	C21	N1	Ce1	C34	-143.9(4)
C1	N1	Ce1	C34	41.9(4)	C21	N1	Ce1	C23	76.2(4)
C1	N1	Ce1	C23	-98.0(3)	C10	N3	Ce1	N2	-19.8(4)
C12	N3	Ce1	N2	168 1(3)	C10	N3	Ce1	N8	163 1(4)
C12	N3	Ce1	N8	-9 0(3)	C10	N3	Ce1	N6	46.3(4)
C12	N3	Ce1	N6	-125 7(2)	C10	N3	Ce1	N5	164(2)
C12	N3	Ce1	N5	-8(2)	C10	N3		N7	104(2) 101 $4(4)$
C12	N3		N7	-70 7(3)	C10	N3		N1	-76 9(4)
C12	N3		N1	111 1(3)	C10	N3		N4	-1367(4)
C12	N3		N/	51 2(2)	C10	N3		C6	-25.2(4)
C12	N2		C6	162.8(2)	C10	N2		C1	-20.2(4)
C12	NO		C0	102.0(2)	C10	NO		C24	-49.2(4)
C12			C24	130.7(2)	C10			C04	13.0(4)
012	NO	Cel	C04	-99.0(3)	C10		Cel	023	-149.7(4)
012			023	30.3(4)	C10	IN4 NI4			10.1(4)
	IN4			-111.0(2)	C18	IN4		INO NG	-97.0(4)
	IN4	Cer		72.0(2)		IN4			-180(34)
017	N4	Cel	IN6	-10.1(15)	C18	N4	Cel		-43.8(4)
017	N4	Cel	IN5	125.8(2)	C18	N4	Cel	N/	-159.5(4)
	N4	Ce1	N/	10.1(3)	C18	N4	Ce1	N1	22.1(4)
C17	N4	Ce1	IN1	-168.3(3)	C18	N4	Ce1	N3	138.9(4)
C17	N4	Ce1	N3	-51.5(2)	C18	N4	Ce1	C6	50.8(4)
C17	N4	Ce1	C6	-139.6(2)	C18	N4	Ce1	C1	27.4(4)
C17	N4	Ce1	C1	-163.0(2)	C18	N4	Ce1	C34	173.1(4)
C17	N4	Ce1	C34	-17.3(3)	C18	N4	Ce1	C23	-47.4(4)
C17	N4	Ce1	C23	122.2(2)	C5	C6	Ce1	N2	105.7(5)

C1	C6	Ce1	N2	-136.1(4)	C5	C6	Ce1	N8	-78.6(5)
N2	C6	Ce1	N8	175.7(2)	C1	C6	Ce1	N8	39.7(4)
C5	C6	Ce1	N6	6.5(4)	N2	C6	Ce1	N6	-99.2(3)
C1	C6	Ce1	N6	124.7(3)	C5	C6	Ce1	N5	-63.9(4)
N2	C6	Ce1	N5	-169.6(3)	C1	C6	Ce1	N5	54.4(2)
C5	C6	Ce1	N7	39.2(5)	N2	C6	Ce1	N7	-66.5(3)
C1	C6	Ce1	N7	157.4(2)	C5	C6	Ce1	N1	-141.6(5)
N2	C6	Ce1	N1	112.7(3)	C1	C6	Ce1	N1	-23.4(2)
C5	C6	Ce1	N3	116.6(4)	N2	C6	Ce1	N3	10.9(3)
C1	C6	Ce1	N3	-125.2(2)	C5	C6	Ce1	N4	-177.1(4)
N2	C6	Ce1	N4	77.2(3)	C1	C6	Ce1	N4	-58.8(3)
C5	C6	Ce1	C1	-118.2(5)	N2	C6	Ce1	C1	136.1(4)
C5	C6	Ce1	C34	47.6(4)	N2	C6	Ce1	C34	-58.1(3)
C1	C6	Ce1	C34	165.9(2)	C5	C6	Ce1	C23	-87.5(4)
N2	C6	Ce1	C23	166.8(2)	C1	C6	Ce1	C23	30.7(3)
C2	C1	Ce1	N2	141.4(5)	N1	C1	Ce1	N2	-113.5(3)
C6	C1	Ce1	N2	24.6(2)	C2	C1	Ce1	N8	-39.5(5)
N1	C1	Ce1	N8	65.5(3)	C6	C1	Ce1	N8	-156.4(2)
C2	C1	Ce1	N6	66.1(5)	N1	C1	Ce1	N6	171.2(3)
C6	C1	Ce1	N6	-50.7(3)	C2	C1	Ce1	N5	-3.6(4)
N1	C1	Ce1	N5	101.4(3)	C6	C1	Ce1	N5	-120.4(3)
C2	C1	Ce1	N7	77.5(5)	N1	C1	Ce1	N7	-177.4(2)
C6	C1	Ce1	N7	-39.3(4)	C2	C1	Ce1	N1	-105.0(5)
C6	C1	Ce1	N1	138.1(4)	C2	C1	Ce1	N3	178.0(4)
N1	C1	Ce1	N3	-76.9(3)	C6	C1	Ce1	N3	61.2(3)
C2	C1	Ce1	N4	-115.8(5)	N1	C1	Ce1	N4	-10.8(3)
C6	C1	Ce1	N4	127.3(2)	C2	C1	Ce1	C6	116.8(6)
N1	C1	Ce1	C6	-138.1(4)	C2	C1	Ce1	C34	99.4(5)
N1	C1	Ce1	C34	-155.6(2)	C6	C1	Ce1	C34	-17.5(3)
C2	C1	Ce1	C23	-31.8(4)	N1	C1	Ce1	C23	73.3(2)
C6	C1	Ce1	C23	-148.6(3)	C35	C34	Ce1	N2	65.1(5)
C39	C34	Ce1	N2	-52.1(3)	N7	C34	Ce1	N2	171.2(3)
C35	C34	Ce1	N8	-116.1(5)	C39	C34	Ce1	N8	126.6(3)
N7	C34	Ce1	N8	-10.1(3)	C35	C34	Ce1	N6	141.6(6)
C39	C34	Ce1	N6	24.4(2)	N7	C34	Ce1	N6	-112.4(3)
C35	C34	Ce1	N5	177.4(5)	C39	C34	Ce1	N5	60.2(3)
N7	C34	Ce1	N5	-76.6(3)	C35	C34	Ce1	N7	-106.1(6)
C39	C34	Ce1	N7	136.7(4)	C35	C34	Ce1	N1	73.8(6)
C39	C34	Ce1	N1	-43.4(4)	N7	C34	Ce1	N1	179.9(2)
C35	C34	Ce1	N3	-5.7(5)	C39	C34	Ce1	N3	-122.9(3)
N7	C34	Ce1	N3	100.3(3)	C35	C34	Ce1	N4	-39.1(6)
C39	C34	Ce1	N4	-156.3(2)	N7	C34	Ce1	N4	66.9(3)
C35	C34	Ce1	C6	88.5(5)	C39	C34	Ce1	C6	-28.7(3)
N7	C34	Ce1	C6	-165.5(2)	C35	C34	Ce1	C1	96.5(5)
C39	C34	Ce1	C1	-20.7(3)	N7	C34	Ce1	C1	-157.4(2)
C35	C34	Ce1	C23	-159.5(5)	C39	C34	Ce1	C23	83.3(3)
N7	C34	Ce1	C23	-53.5(3)	C24	C23	Ce1	N2	-36.1(5)
N5	C23	Ce1	N2	67.9(3)	C28	C23	Ce1	N2	-154.0(2)
C24	C23	Ce1	N8	142.2(5)	N5	C23	Ce1	N8	-113.7(3)
C28	C23	Ce1	N8	24.4(2)	C24	C23	Ce1	N6	-114.5(5)
N5	C23	Ce1	N6	-10.4(3)	C28	C23	Ce1	N6	127.7(3)
C24	C23	Ce1	N5	-104.0(6)	C28	C23	Ce1	N5	138.1(4)
C24	C23	Ce1	N7	179.8(5)	N5	C23	Ce1	N7	-76.1(3)
C28	C23	Ce1	N7	62.0(3)	C24	C23	Ce1	N1	-1.4(5)
N5	C23	Ce1	N1	102.7(3)	C28	C23	Ce1	N1	-119.2(3)
C24	C23	Ce1	N3	80.5(6)	N5	C23	Ce1	N3	-175.4(2)
C28	C23	Ce1	N3	-37.3(4)	C24	C23	Ce1	N4	68.8(5)

N5	C23	Ce1	N4	172.8(3)	C28	C23	Ce1	N4	-49.1(3)
C24	C23	Ce1	C6	-43.7(5)	N5	C23	Ce1	C6	60.3(3)
C28	C23	Ce1	C6	-161.5(3)	C24	C23	Ce1	C1	-29.6(5)
N5	C23	Ce1	C1	74.4(3)	C28	C23	Ce1	C1	-147.5(3)
C24	C23	Ce1	C34	-156.3(5)	N5	C23	Ce1	C34	-52.3(3)
C28	C23	Ce1	C34	85.9(3)					

Symmetry Operators:

x, y, z -x, -y, -z

Table 5. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.1161 (0.0143) x + 0.0471 (0.0148) y + 15.5615 (0.0069) z = 1.2282 (0.0068)

- * -0.0072 (0.0017) N1
- * 0.0072 (0.0017) N2
- * -0.0072 (0.0017) N3
- * 0.0072 (0.0017) N4
 - 1.5067 (0.0018) Ce1

Rms deviation of fitted atoms = 0.0072

- 2.2540 (0.0150) x + 0.2707 (0.0160) y + 15.4513 (0.0080) z = 4.2563 (0.0067)

Angle to previous plane (with approximate esd) = 1.17(0.10)

- * 0.0122 (0.0019) N5
- * -0.0122 (0.0019) N6
- * 0.0121 (0.0019) N7
- * -0.0121 (0.0018) N8
- -1.5093 (0.0019) Ce1

Rms deviation of fitted atoms = 0.0122

2. Ce(tmtaa)(tmtaaH)

2.1 Diagram

Figure S2. ORTEP diagram of Ce(tmtaa)(tmtaaH). Non-hydrogen atoms are refined isotropically, except cerium (Ce1).

2.2 Experimental Details

Data Collection

A fragment of a red block-like crystal of $C_{44}H_{45}CeN_8$ having approximate dimensions of 0.19 x 0.14 x 0.02 mm was mounted on a glass fiber using Paratone N hydrocarbon oil. All measurements were made on a Bruker SMART CCD¹⁰ CCD area detector with graphite monochromated MoK α radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using the measured positions of 2465 centered reflections with I > $10\sigma(I)$ in the range 2.5 < θ < 24.2° corresponded to a primitive triclinic cell with dimensions:

a = 8.919(1) Å	$\alpha = 117.853(1)^{\circ}$
b = 11.424(1) Å	$\beta = 102.987(1)^{\circ}$
c = 11.472(1) Å	$\gamma = 101.300(1)^{\circ}$
$V = 943.63(16)Å^3$	

For Z = 1 and F.W. = 826.00, the calculated density is 1.454 g/cm^3 .

Analysis of the systematic absences allowed the space group to be uniquely determined to be:

P1

The data were collected at a temperature of 119(2) K. Frames corresponding to an arbitrary

hemisphere of data were collected using ω scans of 0.3° counted for a total of 15 seconds per frame.

Data Reduction

Data were integrated by the program SAINT¹¹ to a maximum θ value of 24.73°. The data were corrected for Lorentz and polarization effects. Data were analyzed for agreement and possible absorption using XPREP¹². An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS¹³. (Tmax = 0.9754, Tmin = 0.7972). Of the 4812 reflections that were collected, 3489 were unique (R_{int} = 0.0385); equivalent reflections were merged. No decay correction was applied.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques². Cerium atoms were refined anisotropically, while the rest were refined isotropically. Methyl and methane hydrogen atoms were included in calculated positions using a riding model, but not refined. The amido hydrogen was neither located nor included in the refinement. The crystal was a racemic twin (twin percentage = 41.1 %), and the twin law (-1 0 0, 0 -1 0, 0 0 -1) was incorporated in the refinement. The final cycle of full-matrix least-squares refinement³ was based on 3489 reflections (all data) and 227 variable parameters and converged (largest parameter shift was 0.000 times its esd) with conventional unweighted and weighted agreement factors of:

 $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0675$ for 3391 data with $I > 2\sigma(I)$

$$wR_2 = [(\Sigma w (|Fo|^2 - |Fc|^2)^2 / \Sigma w |Fo|^2)]^{1/2} = 0.1826$$

The standard deviation of an observation of unit weight⁴ was 1.100. The weighting scheme was based on counting statistics and included a factor (q = 0.1394) to downweight the intense reflections. The maximum and minimum peaks on the final difference Fourier map corresponded to 1.841 and -1.804 $e^{7}/Å^{3}$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbel⁸. All calculations were performed using the SHELXTL⁹ crystallographic software package of Bruker Analytical X-ray Systems Inc.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ \text{D}_{\text{calc}} \\ \text{F}_{000} \\ \mu(\text{ MoK}) \end{array}$

Diffractometer Radiation

Detector Position Exposure Time Scan Type θ_{max} No. of Reflections Measured

Corrections

C44 H45 Ce N8 826.00 red, block 0.19 x 0.14 x 0.02 mm triclinic primitive a = 8.919(1) Å b = 11.424(1) Å c = 11.472(1) Å α= 117.853(1)[°] $\beta = 102.987(1)^{\circ}$ $\dot{\gamma} = 101.300(1)^{\circ}$ $\dot{V} = 943.63(16) Å^3$ P1 1 1.454 g/cm^3 423 1.25 cm⁻¹

B. Intensity Measurements

Bruker SMART CCD MoK(λ = 0.71073 Å) graphite monochromated 60.00 mm 15 seconds per frame. ω (0.3 degrees per frame) 24.73° Total: 4812 Unique: 3489 (R_{int} = 0.0385) Lorentz-polarization Absorption (Tmax = 0.9754, Tmin = 0.7972) C. Structure Solution and Refinement

Structure Solution Refinement Function Minimized

Least Squares Weighting scheme

q-factor Anomalous Dispersion No. Observations (I> 2.00σ (I)) No. Variables Reflection/Parameter Ratio Residuals: R; wR₂; Rall Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map direct Full-matrix least-squares $\Sigma w(|F_o|^2 - |F_c|^2)^2$ $w = 1/[\sigma^2(F_o^2) + (qP)^2 + 0.000P]$ where P = $[F_o^2 + 2F_c^2]/3$ 0.1394 All non-hydrogen atoms 3391 227 15 0.0675; 0.1826; 0.0694 1.100 0.000 1.841 e⁷/Å³ -1.804 e⁷/Å³

2.3 Tables

Table 1. Atomic coordinates and $U_{\rm iso}/U_{\rm eq}$ and occupancy

atom	x	У	z	U_{eq}	Occupancy
C1	0.2579(19)	-0.0243(15)	0.6698(16)	0.022(3)	1
C2	0.287(2)	-0.1658(18)	0.6035(19)	0.032(4)	1
C3	0.401(2)	0.0958(19)	0.781(2)	0.038(4)	1
C4	0.4367(19)	0.2434(15)	0.8161(16)	0.022(3)	1
C5	0.620(3)	0.347(3)	0.895(3)	0.044(8)	1
C6	0.3555(19)	0.4282(16)	0.8111(16)	0.022(3)	1
C7	0.4361(19)	0.5464(16)	0.9427(17)	0.025(3)	1
C8	0.450(2)	0.6809(17)	0.9704(18)	0.029(4)	1
C9	0.370(2)	0.6905(18)	0.8585(18)	0.032(4)	1
C10	0.285(2)	0.5727(17)	0.7237(18)	0.028(4)	1
C11	0.2763(18)	0.4371(15)	0.6945(16)	0.020(3)	1
C12	0.158(2)	0.2806(16)	0.4392(17)	0.025(3)	1
C13	0.253(2)	0.3922(16)	0.4170(17)	0.028(4)	1
C14	0.065(2)	0.1503(16)	0.3193(17)	0.027(3)	1
C15	-0.0125(19)	0.0246(16)	0.3044(16)	0.024(3)	1
C16	-0.068(2)	-0.106(2)	0.1539(19)	0.032(4)	1
C17	-0.105(2)	-0.1141(16)	0.4012(17)	0.026(3)	1
C18	-0.255(2)	-0.2139(18)	0.307(2)	0.036(4)	1
C19	-0.328(2)	-0.329(2)	0.314(2)	0.041(4)	1
C20	-0.248(2)	-0.341(2)	0.428(2)	0.039(4)	1
C21	-0.094(2)	-0.2412(19)	0.5243(19)	0.035(4)	1
C22	-0.021(2)	-0.1280(17)	0.5146(17)	0.027(4)	1
C23	-0.039(2)	0.1129(16)	0.8140(17) 0.8842(16)	0.021(4)	1
C24	-0.005(2)	0.0167(19)	0.0012(10) 0.9107(19)	0.021(0) 0.035(4)	1
C25	0.128(2)	0.0542(19)	1 0242(19)	0.036(4)	1
C26	0.239(2)	0.0012(10) 0.1956(19)	1 109(2)	0.038(4)	1
C27	0.203(2) 0.208(2)	0.1000(10)	1.100(2)	0.031(4)	1
C28	0.0719(19)	0.2571(16)	0.9690(17)	0.025(3)	1
C29	0.0498(19)	0.4754(16)	0.9986(16)	0.020(0)	1
C30	0.089(2)	0.5403(18)	1 1566(17)	0.022(0)	1
C31	0.000(2)	0.5578(17)	0.9428(17)	0.026(3)	1
C32	-0.066(2)	0.5158(15)	0.8036(16)	0.020(0)	1
C33	-0.117(2)	0.6301(18)	0.7856(18)	0.022(0) 0.032(4)	1
C34	-0.1815(19)	0.3449(15)	0.5547(16)	0.002(4) 0.021(3)	1
C35	-0 152(2)	0.4163(18)	0.4889(18)	0.021(0) 0.031(4)	1
C36	-0.229(2)	0.3590(18)	0.3437(18)	0.031(4)	1
C37	-0.342(2)	0.0000(10) 0.2173(17)	0.0407(10) 0.2584(18)	0.001(4)	1
C38	-0.365(2)	0.1388(18)	0.2004(10)	0.031(4)	1
C39	-0.2017(18)	0.1000(10) 0.2004(15)	0.0207(10) 0.4654(15)	0.001(4)	1
C40	-0.4376(18)	0.2004(15)	0.4004(10)	0.020(3)	1
C41	-0.603(3)	0.0500(10)	0.3231(13) 0.451(2)	0.020(0)	1
C42	-0 449(2)	-0.031(2)	0.401(2)	0.022(0)	1
C42	-0.318(2)	0.0053(16)	0.332(2) 0.7200(17)	0.041(4) 0.025(3)	1
C43	-0.387(3)	-0.0000(10)	0.7200(17)	0.023(3)	1
N1	-0.307(3) 0.124(2)	-0.042(2)	0.6322(18)	0.043(3)	1
N2	0.127(2)	0.0031(17)	0.0322(10) 0.794(2)	0.000(4)	1
N2	0.020(2)	0.2102(13)	0.73+(2) 0.572(2)	0.021(3)	1
NZ NZ	0.101(∠) -0.022(2)	0.311(2) 0.0450(18)	0.012(2)	0.011(3) 0.021(4)	1
NE	-0.022(2)	0.0+30(10)	0.4000(10)	0.021(4)	1
N6	-0.101(3) 0.0486(10)	0.077(2)	0.701(3)	0.022(0) 0.016(1)	1
	0.0400(19)	0.0700(10)	0.0100(10)	0.010(4)	I

N7	-0.093(3)	0.399(2)	0.706(2)	0.027(6)	1
N8	-0.304(2)	0.1079(19)	0.547(2)	0.020(4)	1
Ce1	0.0075(1)	0.1942(1)	0.6641(1)	0.019(1)	1

 $U_{\mbox{\scriptsize eq}}$ is defined as one third of the orthogonalized $U_{\mbox{\scriptsize ij}}$ tensor

Table 2. Anisotropic Displacement Parameters

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U_{23}
Ce1	0.023(1)	0.017(1)	0.016(1)	0.008(1)	0.007(1)	0.008(1)

The general temperature factor expression:

 $exp(-2\Pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table 3. Selected Bond Lengths(Å)

atom	atom	distance	atom	atom	distance
N1	Ce1	2.571(17)	N2	Ce1	2.594(19)
N3	Ce1	2.56(2)	N4	Ce1	2.524(17)
N5	Ce1	2.57(2)	N6	Ce1	2.520(16)
N7	Ce1	2.54(2)	N8	Ce1	2.555(19)

3. References

(1) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99)

(2) XL: Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99)

(3) Least-Squares:

Function minimized: $\Sigma w (|Fo|^2 - |Fc|^2)^2$

(4) Standard deviation of an observation of unit weight:

$$\begin{split} & [\Sigma \textit{w}(|Fo|^2 - |Fc|^2)^2 / (N_o - N_v)]^{1/2} \\ & \text{where:} \quad N_o = \text{number of observations} \\ & N_v = \text{number of variables} \end{split}$$

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) XP: Molecular Graphics program. Part of the SHELXTL Structure Determination Package. Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99)

(10)<u>SMART</u>: Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (1995-99)

(11)<u>SAINT</u>: SAX Area-Dectector Integration Program, V5.04; Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(12)<u>XPREP</u>:(v 5.03) Part of the SHELXTL Crystal Structure Determination Package, Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(13)<u>SADABS</u>: Siemens Area Detector ABSorption correction program, George Sheldrick, (1996). Advance copy, private communication.