Pyrrolylamidourea based anion receptors

Louise S. Evans, Philip A. Gale^{*}, Mark E. Light and Roberto Quesada^{*} School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ. Fax: +44 (0)23 8059 6805; Tel: +44 (0)23 8059 3332; E-mail: philip.gale@soton.ac.uk; quesada@soton.ac.uk

Supplementary information

Figure S1¹H NMR spectra of the TBA salt of deprotonated compound 4 in DMSO d_6 .

Figure S2 a) UV–vis absorption spectrophotometric titration of compound 2 with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 390 nm versus concentration of anion. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S3 a) UV–vis absorption spectrophotometric titration of compound 2 with TBA acetate in DMSO at 25 °C. b) Variation of absorbance at 390 nm versus concentration of anion. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$

Figure S4 a) UV–vis absorption spectrophotometric titration of compound 2 with TBA benzoate in DMSO at 25 °C. b) Variation of absorbance at 390 nm versus concentration of anion. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$

Figure S5 a) UV–vis absorption spectrophotometric titration of compound 2 with TBA dihydrogenphosphate in DMSO at 25 °C. b) Variation of absorbance at 390 nm versus concentration of anion. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$

Figure S6 a) UV–vis absorption spectrophotometric titration of compound **3** with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 360 nm versus concentration of anion.

Figure S7 a) UV–vis absorption spectrophotometric titration of compound **3** with TBA dihydrogenphosphate in DMSO at 25 °C. b) Variation of absorbance at 360 nm versus concentration of anion.

Figure S8 a) UV–vis absorption spectrophotometric titration of compound 4 with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 360 nm versus equivalents of fluoride.

Figure S9 a) UV-vis absorption spectrophotometric titration of compound **4** with TBA acetate in DMSO at 25 °C. b) Variation of absorbance at 450 nm versus equivalents of acetate.

Figure S10 a) UV–vis absorption spectrophotometric titration of compound **4** with TBA acetate in DMSO/ water 9:1 at 25 °C. b) Variation of absorbance at 450 nm versus equivalents of acetate.

Figure S11 Stack plot of ¹H NMR spectra of compound 2 in the presence of increasing amounts of TBAF recorded in DMSO- d_6 .

Figure S12 a) UV–vis absorption spectrophotometric titration of compound **5** with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of fluoride. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S13 a) UV–vis absorption spectrophotometric titration of compound **5** with TBA acetate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of acetate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S14 a) UV–vis absorption spectrophotometric titration of compound **5** with TBA benzoate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of benzoate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S15 a) UV–vis absorption spectrophotometric titration of compound **5** with TBA dihydrogenphosphate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of dihydrogenphosphate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S16 a) UV–vis absorption spectrophotometric titration of compound **6** with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 400 nm versus concentration of fluoride. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S17 a) UV–vis absorption spectrophotometric titration of compound **6** with TBA acetate in DMSO at 25 °C. b) Variation of absorbance at 400 nm versus concentration of acetate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S18 a) UV–vis absorption spectrophotometric titration of compound **6** with TBA benzoate in DMSO at 25 °C. b) Variation of absorbance at 400 nm versus concentration of benzoate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S19 a) UV–vis absorption spectrophotometric titration of compound **6** with TBA dihydrogenphosphate in DMSO at 25 °C. b) Variation of absorbance at 400 nm versus concentration of dihydrogenphosphate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S20 a) UV–vis absorption spectrophotometric titration of compound 7 with TBA fluoride in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of fluoride. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S21 a) UV–vis absorption spectrophotometric titration of compound 7 with TBA acetate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of acetate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S22 a) UV–vis absorption spectrophotometric titration of compound 7 with TBA benzoate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of benzoate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.

Figure S23 a) UV–vis absorption spectrophotometric titration of compound 7 with TBA dihydrogenphosphate in DMSO at 25 °C. b) Variation of absorbance at 330 nm versus concentration of dihydrogenphosphate. The trend line is the result of the non linear least-square fit of the experimental data according to $A-A_0=B\times[G^-]/(1+(K\times[G^-]))$.