Table S1. Relative energies in $\mathrm{kcal} \mathrm{mol}^{-1}$ and selected list of geometry parameters (distances in \AA and angles in degrees) using different density functionals for $\mathrm{Re}\left(\equiv \mathrm{CCH}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{OSiH}_{3}\right)\left(\mathbf{1} \mathbf{M}_{\mathbf{q}}\right)$ and $\mathrm{Re}\left(\equiv \mathrm{CCH}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\left(\mathbf{2} \mathbf{M}_{\mathbf{q}}\right)$ complexes.

Functional	Structure	ΔE	Re-C1	Re-C2	Re-O	C2-H	C1-Re-C2	Re-C2-H	$\mathrm{Re}-\mathrm{O}-\mathrm{Si}$
B3LYP	syn-1 $\mathbf{M}_{\mathbf{q}}-\mathbf{G}^{\text {a }}$	0.0	1.728	1.873	1.928	1.110	99.3	107.2	146.6
B3LYP	anti-1 $\mathbf{M}_{\mathbf{q}}-\mathrm{G}^{\mathrm{a}}$	1.2	1.727	1.882	1.928	1.091	98.3	127.9	145.8
B3LYP	syn-2 $\mathbf{M}_{\mathbf{q}}-\mathbf{G}^{\text {a }}$	0.0	1.726	1.861		1.112	101.4	104.2	
B3LYP	anti-2M $\mathbf{q}_{\mathbf{q}} \mathbf{-} \mathrm{G}^{\text {a }}$	2.2	1.725	1.872		1.090	99.7	128.5	
PBEPBE	syn-1 $\mathbf{M}_{\mathbf{q}}-\mathbf{G}^{\text {a }}$	0.0	1.742	1.885	1.939	1.118	99.2	107.5	144.1
PBEPBE	anti-1 $\mathbf{M}_{\mathbf{q}}-\mathrm{G}^{\text {a }}$	1.1	1.741	1.894	1.940	1.099	98.5	127.8	142.5
PBEPBE	syn-2 $\mathbf{M}_{\mathbf{q}}-\mathbf{G}^{\text {a }}$	0.0	1.741	1.873		1.120	101.4	104.5	
PBEPBE	anti-2 $\mathbf{M}_{\mathbf{q}}-\mathbf{G}^{\text {a }}$	2.1	1.740	1.884		1.098	100.0	128.3	

${ }^{\text {a }}$ Calculated as an isolated molecule with GAUSSIAN03 package.

Figure S1. Optimized structures of $\operatorname{Re}(\equiv \mathrm{C} t \mathrm{Bu})(=\mathrm{CH} t \mathrm{Bu})\left(\mathrm{CH}_{2} t \mathrm{Bu}\right)\left(\mathrm{OSiPh}_{3}\right)\left(\mathbf{1 M}_{\mathbf{f}}\right)$. Distances in \AA and angles in degrees.

Figure S2. Optimized structures of $\left[(\equiv \mathrm{SiO}) \mathrm{Re}(\equiv \mathrm{CtBu})(=\mathrm{CH} t \mathrm{Bu})\left(\mathrm{CH}_{2} t \mathrm{Bu}\right)\right]$ using Edingtonite as surface model $\left(\mathbf{E}_{(\mathbf{1 0 0})}-\mathbf{1}_{\mathbf{f}}\right)$. Distances in \AA and angles in degrees.

Figure S3. Optimized structures of $\left[(\mathrm{Me})_{7} \mathrm{Si}_{7} \mathrm{O}_{12} \mathrm{SiO}-\mathrm{Re}(\equiv \mathrm{CtBu})(=\mathrm{CH} t \mathrm{Bu})\left(\mathrm{CH}_{2} t \mathrm{Bu}\right)\right]\left(\mathbf{1 P}_{\mathbf{f}}\right)$. Distances in \AA and angles in degrees.

Figure S4. Band decomposed charge density for the three highest occupied bands. They correspond to the three $\pi \mathrm{Re}-\mathrm{C}$ bonds, $\mathrm{Re} \equiv \mathrm{C}$ (band number 244 and 245) and $\mathrm{Re}=\mathrm{C}$ (band number 246). Dark blue atoms $=\mathrm{Si}$, light blue $=\mathrm{O}$, green $=\mathrm{C}$, yellow $=\mathrm{H}$ and red $=\mathrm{Re}$.

