The Centre National de la Recherche Scientifique, 2006

New coordination polymer networks based on Copper(II)

hexafluoroacetylacetonate and pyridine containing building

blocks: synthesis and structureal study

Silke Winter,^[a] Edwin Weber,^{* [a]} Lars Eriksson^[b] and Ingeborg Csöregh^{* [b]}

SUPPORTING INFORMATION

- [a] Prof. Dr. E. Weber, Dr. S. Winter Institut f
 ür Organische Chemie, TU Bergakademie Freiberg Leipziger Str. 29, D-09596 Freiberg/Sachsen (Germany) Fax: (+49) 3731-393710 E-mail: edwin.weber@chemie.tu-freiberg.de
- [b] Prof. Dr. I. Csöregh, Dr. L. Eriksson
 Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University
 S-10691 Stockholm (Sweden)
 Fax: (+46) 8 163118
 E-mail: ics@struc.su.se

- # This journal is (c) The Royal Society of Chemistry and
- # The Centre National de la Recherche Scientifique, 2006

Table	S1.	Geometric de	etails of possible	(C–)H····O/F	interactions ^[a]	and selected	C···F/C	inter-
chain	cont	tact distances ^a	^b in complex A .					

A 1 1		Distance [Å]			Angle [^o]
Atoms involved	Symmetry	C····O/F/C	С–Н	H··O/F	C–H··O/F
C(1)−H(1)···O(3)	x, -y+0.5, -x+1.5	3.074(6)	0.93	2.51	119
C(2)–H(2)…F(1)	<i>x</i> –0.5, – <i>y</i> , – <i>z</i> +1	3.448(7)	0.93	2.52	174
$C(4)-H(4)\cdots F(2)$	x–1, y, z	3.378(7)	0.93	2.78	123
C(5)–H(5)…F(4)	<i>x</i> –0.5, – <i>y</i> +1, <i>z</i>	3.437(9)	0.93	2.68	139
C(13)–H(13)…F(2)	- <i>x</i> , - <i>y</i> ,- <i>z</i> +1	3.576(7)	0.93	2.98	123
C(7)···F(1)	x–1, y, z	3.291(6)			
C(8)…F(1)	x–1, y, z	3.373(5)			
C(13)…F(1)		3.302(7)			
C(14)…F(1)	- <i>x</i> , - <i>y</i> , - <i>z</i> +1	3.348(5)			
C(2)…C(10)	<i>x</i> +0.5, −у, <i>z</i>	3.562(7)			
C(7)…C(8)	-x-0.5, y, -z+1	3.589(6)			

^a Esd's, where given, are in parentheses. The (C–)H atoms were held in positions calculated using geometric evidence.⁴⁷ The distances/angles have been calculated without correction or normalization of the H positions.

 b Shorter connections with C…F < 3.4 and C…C < 3.6 Å were selected.

The Centre National de la Recherche Scientifique, 2006

Table S2. Dihedral angles,^a formed by the pyridyl rings with the central benzene ring plane within the tris(pyridylethynyl)benzene ligand moieties in compounds **C** and **D**.

Commonweda		Dihedral angles [°] involving the LS planes ^a of the benzene ring and			
Compounds	-	pyridyl ring 1 ^b pyridyl ring 2 ^b		pyridyl ring 3 ^b	
Complex \mathbf{C}^{c}	Δ	8 20(2)	4.05(3)	7 21(2)	
complex c	В	73.69(3)	5.23(3)	11.66(3)	
	С	81.77(3)	5.10(3)	13.61(3)	
	D	9.06(3)	5.17(3)	7.56(3)	
	Е	81.67(3)	6.49(3)	13.28(3)	
	F	78.59(3)	4.07(3)	11.95(3)	
Complex D		78.1(1)	3.7(2)	22.0(7)	
				52.8(5) ^d	

^a The least square (LS) planes were calculated through the non-hydrogen ring atoms. Esd's are given in parentheses.

^b Pyridyl rings 1, 2 and 3 contain the heteroatoms N(1), N(2) and N(3), respectively.

^c Complex C contains six unique tris(pyridylethynyl)benzene spacer units A-F.

^d Pyridyl ring 3 in complex **D** was found to be disordered, occupying two major disorder sites (Fig. 5) with about the same probability (*cf.* the text).

Supplementary Material (ESI) for New Journal of Chemistry

The Centre National de la Recherche Scientifique, 2006

Table S3. Distances and angles in possible (C–)H…N (a) and (C–)Cl… $\pi_{ethynyl}$ interactions (b), ^{a, b} and selected contact distances ^c between the polymeric **D** host framework and the included chloroform guest molecule (c).

Atoma involved		Distance [Å]			Angle [^o]
Atoms involved	Symmetry	C…N	С–Н	H…N	С−Н…N
$C(1G)-H(1G)\cdots N(3)$	<i>x, y, z</i>	3.12(1)	0.99	2.22	151
$C(1G')-H(1G')\cdots N(3)$	<i>x, y, z</i>	3.27(2)	1.00	2.38	149
C(1G)-H(1G)···N(3')	<i>x, y, z</i>	3.04(1)	0.99	2.13	153
C(1G')-H(1G')…N(3')	<i>x, y, z</i>	3.17(2)	1.00	2.19	168
C(1G")–H(1G")…N(3)	<i>x, y, z</i>	3.35(3)	0.98	2.52	142

(a)

(b)

Atoms involved	Symmetry	Distance [Å] Cl $\cdots \pi_{\text{ethynyl}}^{c}$	Angle [°] C–Cl··· $\pi_{ethynyl}$ °
$C(1G)$ – $Cl(1)$ ··· $\pi_{ethynyl}$ (3) ^b	-x - 1,-y - 1,-z - 1	3.561(8)	151.0(8)
$C(1G')-Cl(2')\cdots\pi_{ethynyl}(1)^{b}$	<i>x, y, z</i> + <i>1</i>	3.219(6)	152.6(7)
$C(1G'')$ - $Cl(3'')$ ··· $\pi_{ethynyl}(3)^{b}$	-x, -y - 1, -z - 1	3.39(1)	147(2)

The Centre National de la Recherche Scientifique, 2006

Atoms involved	Symmetry	Distance [Å]
Cl(1')…F(11)	x, y+1, z–1	3.208(9)
C(8)…Cl(3")	x, y, z+1	3.67(2)
C(9)…Cl(2')	x, y, z+1	3.481(6)
C(12)…Cl(1')	x+1, y, z+1	3.477(8)
C(13)…Cl(1')	x+1, y, z+1	3.364(8)
C(21)···Cl(1)	-x-1, -y-1, -z-1	3.636(9)
C(22)…Cl(3")		3.15(2)
C(22)···Cl(1)	-x-1, -y-1, -z-1	3.59(1)
C(29)…Cl(2")	-x+1, -y, -z	3.54(2)
Cl(3')…F(2)	x–1, y–1, z–1	3.115(8)
$Cl(1)\cdots F(2)$	x–1, y–1, z–1	3.351(9)
$Cl(2")\cdots F(1)$	-x+1, y, z	3.30(2)
$Cl(1)\cdots F(1)$	x-1, y-1, z-1	3.397(7)
Cl(2")…F(2)	-x+1, -y, -z	3.37(2)
Cl(3)…F(4)	x–1, y, z–1	3.283(7)
Cl(1')…F(4)	x, y+1, z–1	3.474(9)
Cl(3)…F(11)	-x-1, -y-1, -z	3.336(7)

^a Esd's, where given, are in parentheses. The chloroform (C–)H disorder sites were held riding on their parent C atoms during the final refinement calculations. The distances/angles have been calculated without correction or normalization of the H positions.

^b π_{ethynyl} means the center of gravity of the ethynyl C=C bond,²⁹ where bonds (1), (2) and (3) are those between C(7) and C(8), C(14) and C(15), and C(21) and C(22), respectively (Figure 5).

^c Shorter contacts with distances C···Cl < 3.7, Cl···F < 3.5 and Cl··· π < 3.6 Å were selected, where at least one of the two connected atoms have full site occupancy.

Supplementary Material (ESI) for New Journal of Chemistry

The Centre National de la Recherche Scientifique, 2006

Table S4. Geometry of possible (C–)H…F (a) and (C–)F… $\pi_{ethynyl}$ (b) interactions, ^{a, b, c} and selected inter-chain contact distances ^{b, c, d, e} (c) in complex **D**.

A toma involved	Symmetry	Distance [Å]			Angle [^o]
Atoms involved	Symmetry	C…N	С–Н	H…N	C–H··N
C(10)–H(10)…F(4) C(26)–H(26)…F(5)	x–1, y, z x–1, y, z–1	3.538(5) 3.603(11)	0.93 0.93	2.93 2.83	125 142

(b)

(a)

Atoms involved	Symmetry	Distance [Å] F…π _{ethynyl}	Angle [°] C–F··· $\pi_{ethynyl}$
C(37)–F(11) $\cdots \pi_{ethynyl}$ (2) ^c	-x - 1, -y - 2, -z	3.502(5)	119.2(4)
C(33)–F(7) $\cdots \pi_{\text{ethynyl}}$ (2) ^c	-x - 1, -y - 2, -z	3.729(5)	110.8(4)

Supplementary Material (ESI) for New Journal of Chemistry# This journal is (c) The Royal Society of Chemistry and# The Centre National de la Recherche Scientifique, 2006

Atoms involved	Symmetry	Distance [Å]
C(9)…F(11)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.353(5)
C(10)…F(12)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.182(6)
C(10)…F(6)	x–1, y, z	3.479(5)
C(11)…F(6)	x–1, y, z	3.277(5)
C(11)…F(12)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.154(5)
C(13)…F(11)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.329(5)
C(17)…F(7)	-x-1, -y-2, -z	3.201(5)
C(20)…F(10)	-x-1,-y-2,-z	3.226(5)
C(21)…F(9)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.368(5)
C(22)…F(9)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.212(6)
C(23)…F(1)	-x, -y, -z	3.40(2)
C(24)…F(1)	-x, -y, -z	3.21(2)
C(25)…F(1)	-x, -y, -z	3.27(2)
C(25)…F(1)	x+1, y+1, z+1	3.305(9)
C(27)…F(3)	-x, -y, -z	3.30(2)
C(27')…F(3)	-x, -y, -z	3.42(2)

(c)

The Centre National de la Recherche Scientifique, 2006

Atoms involved	Symmetry	Distance [Å]
C(29)…F(12)	<i>x</i> +1, <i>y</i> +1, <i>z</i>	3.278(5)
C(30)…F(12)	<i>x</i> + <i>1</i> , <i>y</i> + <i>1</i> , <i>z</i>	3.416(6)
C(10)····O(4)	<i>x</i> + <i>1</i> , <i>y</i> + <i>1</i> , <i>z</i>	3.376(5)
C(1)…C(6)		3.469(5)
C(1)…C(5)	-x, -y-1, -z	3.559(5)
C(1)…C(20)	-x-1, -y-1, -z	3.484(5)
C(1)…C(16)	-x-1, -y-1, -z	3.584(5)
C(2)…C(6)	<i>−x, −y−1, −z</i>	3.528(5)
C(3)…C(15)	-x-1, -y-1, -z	3.543(5)
C(4)…C(7)		3.572(5)
C(5)…C(7)	-x, -y-1, -z	3.508(5)
C(5)…C(17)	-x-1, -y-1, -z	3.405(5)
C(6)…C(17)	-x-1, -y-1, -z	3.462(5)
C(6)…C(18)	-x-1, -v-1, -z	3.456(5)
C(7)…C(19)	-x-1, -y-1, -z	3.504(5)
C(7)…C(20)	-x-1, -y-1, -z	3.568(5)
C(14)…C(14)	-x-1, -y-1, -z	3.576(7)
$\pi_{aryl}(1)\cdots\pi_{aryl}(3)^{e}$	x, y+1, z–1	3.743
$\pi_{ethynryl}$ (2) $\cdots\pi_{ethynryl}$ (2) ^c	-x-1, -y-1, -z	3.804

Table S4 (cont.)

 a Only the most probable C–H··F bonds, with C··F < 3.61 Å and C–H··F angle $>\!\!120^o$ were selected.

^b Esd's, where given, are in parentheses. The (C–)H atoms were held in positions calculated using geometric evidence. ⁴⁷ The distances/angles have been calculated without correction or normalization of the H positions.

^c π_{ethynyl} means the center of gravity of the ethynyl C=C bond, ²⁹ where bonds (1), (2) and (3) are those between C(7) and C(8), C(14) and C(15), and C(21) and C(22), respectively (Figure 5).

^d Shorter contacts with distances C…F < 3.4, C…O < 3.5 and C…C < 3.6 Å were selected, where at least one of the two connected atoms has full site occupancy.

- # Supplementary Material (ESI) for New Journal of Chemistry
- # This journal is (c) The Royal Society of Chemistry and
- # The Centre National de la Recherche Scientifique, 2006

^e π_{aryl} means the ring center of gravity, ²⁹ here calculated for the six-membered rings (1) and (3), where ring (1) is the C(1)–C(2)–C(3)–C(4)–C(5)–C(6) benzene ring; and ring (3) is the C(16)–C(17)–C(18)–N(2)–C(19)–C(20) pyridine ring (Fig. 5).