**Supporting Information** 

# Through-space communication in a TTF-C<sub>60</sub>-TTF triad

F. Oswald,<sup>a</sup> S. Chopin,<sup>b</sup> P. de la Cruz,<sup>a</sup> J. Orduna,<sup>c</sup> J. Garín,<sup>c</sup> A. S. D. Sandanayaka,<sup>d</sup> Y. Araki,<sup>d</sup> O. Ito,<sup>d</sup>,\* J. L. Delgado,<sup>a</sup> J. Cousseau,<sup>b</sup>,\* and F. Langa,<sup>a</sup>,\*

<sup>a</sup> Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, 45071 Toledo, Spain.
<sup>b</sup> Chimie, Ingénierie Moléculaire et Matériaux d'Angers, UMR CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France.
<sup>c</sup> Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain.
<sup>d</sup> IMRAM, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577 Japan.

E-mail: Fernando.Lpuente@uclm.es; jack.cousseau@univ-angers.fr; ito@tagen.tohoku.ac.jp



<sup>1</sup>H NMR of compound **3** (the asterisks \* indicate the signals due to CH<sub>2</sub> and CH<sub>3</sub> groups from triethylamine used to improve the resolution of this spectrum)

Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2006





Voyager Spec #1=>BC=>NF0.1=>NF0.5[BP = 586.4, 9204]

Mass Spectrum of compound 3







<sup>13</sup>C NMR of compound **6**.



Mass spectra of compound 6

-----



<sup>1</sup>H NMR of compound 7.



<sup>13</sup>C NMR of compound 7.





Mass spectra of compound 7.

Data File D:\DATOS\BISTTF\TEST0001.D

Sample Name: BisTTF 🔅

Page 1 of 1

.

| Injection Date<br>Sample Name<br>Acq. Operator<br>Acq. Method<br>Last changed<br>Analysis Method<br>Last changed | : 06/11/2006 16:18:31<br>: BisTTF<br>: Fred<br>: C:\DOCUME~1\FREDER~1.0SW\<br>: 06/11/2006 16:15:57 by F<br>: C:\DOCUME~1\FREDER~1.0SW\<br>: 08/11/2006 10:37:22 by F<br>(modified after loading) | Seg. Line : 1<br>Location : Vial 21<br>Inj : 1<br>Inj Volume : 5 µl<br>MISDOC~1\RETROCYC.M<br>Yred<br>MISDOC~1\RETROCYC.M<br>Yred |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DAD1 A, Sig                                                                                                      | ]=336,50 Ref=360,100 (BISTTF\TEST0001.D)                                                                                                                                                          | 5                                                                                                                                 |  |  |  |
| 120 -                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 100 -                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 80 -                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 60 -<br>-                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 40 -                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 20 -                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| 0                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
|                                                                                                                  | 25 5 75                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
|                                                                                                                  | 2 7.0                                                                                                                                                                                             |                                                                                                                                   |  |  |  |
|                                                                                                                  | Area Percent Repor                                                                                                                                                                                | :t                                                                                                                                |  |  |  |
|                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
| Sorted By<br>Multiplier<br>Dilution                                                                              | : Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                  |                                                                                                                                   |  |  |  |
| Signal 1: DAD1 /                                                                                                 | A. Sig=336.50 Ref=360.100                                                                                                                                                                         |                                                                                                                                   |  |  |  |
| Peak RetTime Typ<br># [min]                                                                                      | pe Width Area Heic<br>[min] [mAU*s] [mAU                                                                                                                                                          | (ht Area<br>J] %                                                                                                                  |  |  |  |
| 1 11.407 BB                                                                                                      | 0.3564 3044.25757 130.3                                                                                                                                                                           | /8162 100.0000                                                                                                                    |  |  |  |
| Totals :                                                                                                         | 3044.25757 130.3                                                                                                                                                                                  | 18162                                                                                                                             |  |  |  |
| Results obtained with enhanced integrator!                                                                       |                                                                                                                                                                                                   |                                                                                                                                   |  |  |  |
|                                                                                                                  | *** End of Report                                                                                                                                                                                 | ; ***                                                                                                                             |  |  |  |

LC1100 08/11/2006 10:39:14 Fred

HPLC plot of compound 7



Cyclic voltammograms of triad 7 in *o*-DCB/acetonitrile 4:1 containing 0.1 M (*n*-Bu)<sub>4</sub>NClO<sub>4</sub>. Scan rate 100 mV s<sup>-1</sup>



<sup>1</sup>H NMR of compound **8**.

#### Voyager Spec #1 MC=>MC=>BC=>NR(1.00)[BP = 1197.3, 15294]



Mass spectra of compound 8.



LC1100 08/11/2006 10:40:26 Fred

Page 1 of 1

HPLC plot of compound 8

## **COMPUTATIONAL STUDIES:**

Level of theory: MM+ Specific program: Hyperchem 7.5 Default Input Parameters.

Level of theory: DFT-B3PW91 Specific program: Gaussian 03 Basis set: 6-31G\* Default Input Parameters.

## **Cartesian coordinates of compound 7:**

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coordinates (Angstroms)<br>X Y Z |           |           |
|------------------|------------------|----------------|----------------------------------|-----------|-----------|
| 1                | <br>16           |                | 5.422189                         | -1.826023 | 2.810881  |
| 2                | 6                | 0              | 6.051360                         | -3.534682 | 2.609231  |
| - 3              | 6                | 0              | 6.747452                         | -0.787620 | 2.127413  |
| 4                | 6                | Õ              | 7 283999                         | -3 606659 | 2 061098  |
| 5                | 16               | Õ              | 8 021453                         | -1 983679 | 1 630723  |
| 6                | 16               | 0              | 5 064510                         | -4 972338 | 3 092721  |
| 7                | 10               | 0              | 6 769207                         | 0 5/1806  | 2 002580  |
| 8                | 16               | 0              | 8 163864                         | -5 152010 | 1 716835  |
| 9                | 10               | 0              | 3 288651                         | _1 829330 | 3 167176  |
| 10               | 16               | 0              | 0 070400                         | 1 577690  | 1 200000  |
| 11               | 16               | 0              | 5 100020                         | 1 727626  | 2 470040  |
| 12               | 10               | 0              | 0 705056                         | -5 107260 | 0 006113  |
| 12               | 6                | 0              | 3.785050                         | -1.957440 | 1 002725  |
| 14               | 6                | 0              | 5.040035                         | -4.057440 | 4.903733  |
| 14               | 6                | 0              | 0.1/00/9                         | 3.357052  | 1.960762  |
| 15               | 6                | 0              | 7.406146                         | 3.280407  | 1.401090  |
| 10               | 1                | 0              | 2.761250                         | -5.687098 | 2.989642  |
| 1/               | l                | 0              | 2.859217                         | -3.910302 | 3.015492  |
| 18               | 6                | 0              | 9.568901                         | -4.91/238 | -0.624021 |
| 19               | 6                | 0              | 3.432971                         | -3.5/3598 | 5./36328  |
| 20               | 16               | 0              | 5.182178                         | 4.847376  | 2.220398  |
| 21               | 16               | 0              | 8.367566                         | 4.674860  | 0.766402  |
| 22               | 1                | 0              | 10.339876                        | -6.054273 | 1.079429  |
| 23               | 1                | 0              | 10.397805                        | -4.269647 | 1.291472  |
| 24               | 1                | 0              | 3.573017                         | -5.730840 | 5.431866  |
| 25               | 1                | 0              | 1.957074                         | -5.054369 | 5.165679  |
| 26               | 6                | 0              | 10.904171                        | -4.842155 | -1.382755 |
| 27               | 6                | 0              | 2.648250                         | -2.307067 | 5.350523  |
| 28               | 6                | 0              | 5.804722                         | 6.545730  | 2.028921  |
| 29               | 6                | 0              | 9.999105                         | 4.432043  | 0.013508  |
| 30               | 1                | 0              | 8.995688                         | -3.977330 | -0.812149 |
| 31               | 1                | 0              | 8.966575                         | -5.765405 | -1.030805 |
| 32               | 1                | 0              | 4.523710                         | -3.385265 | 5.595936  |
| 33               | 1                | 0              | 3.289648                         | -3.748312 | 6.830485  |
| 34               | 6                | 0              | 10.695186                        | -4.644653 | -2.892890 |
| 35               | 6                | 0              | 1.133703                         | -2.422522 | 5.560944  |
| 36               | 6                | 0              | 5.550628                         | 7.038088  | 0.595358  |
| 37               | 1                | 0              | 11.483194                        | -5.780336 | -1.208015 |
| 38               | 1                | 0              | 11.510338                        | -3.995588 | -0.981232 |
| 39               | 1                | 0              | 2.847765                         | -2.032224 | 4.289932  |
| 40               | 1                | 0              | 3.027823                         | -1.454946 | 5.964096  |
| 41               | 1                | 0              | 5.272245                         | 7.209116  | 2.748489  |
| 42               | 1                | 0              | 6.886882                         | 6.608128  | 2.283382  |
| 43               | 1                | 0              | 9.982743                         | 4.808563  | -1.033384 |
| 44               | 1                | 0              | 10.269014                        | 3.352835  | 0.010228  |
| 45               | 1                | 0              | 10.762670                        | 4.996641  | 0.595735  |

|          | This journal is © The Ro | yal Society of Chem | istry and The Centre Na | ational de la Recher | che Scientifique, 2006 |
|----------|--------------------------|---------------------|-------------------------|----------------------|------------------------|
| 46       | 6                        | 0                   | 12.029418               | -4.566898            | -3.646353              |
| 47       | 6                        | 0                   | 6.039089                | 8.484966             | 0.402435               |
| 48       | 1                        | 0                   | 10.117524               | -3.706259            | -3.071643              |
| 49       | 1                        | 0                   | 10.090817               | -5.490267            | -3.300232              |
| 50       | 1                        | 0                   | 0.632507                | -1.442423            | 5.387890               |
| 51       | 1                        | 0                   | 0.894807                | -2.744472            | 6.600461               |
| 52       | 1                        | 0                   | 0.673526                | -3.150600            | 4.854604               |
| 53       | 1                        | 0                   | 6.068321                | 6.379931             | -0.141154              |
| 54       | - 1                      | 0                   | 4.458721                | 6.985016             | 0.374468               |
| 55       | -                        | 0                   | 5 898971                | 8 983608             | -1 045242              |
| 56       | 1                        | 0                   | 12 647061               | -3 713580            | -3 284688              |
| 57       | 1                        | 0                   | 11 862433               | -4 424297            | -4 740233              |
| 58       | 1                        | 0                   | 12 621591               | -5 501757            | -3 513578              |
| 59       | 1                        | 0                   | 5 470674                | 9 161506             | 1 08/35/               |
| 60       | 1                        | 0                   | 7 112652                | 9.101300<br>8 550790 | 0 700511               |
| 61       | L<br>G                   | 0                   | 1.171002                | 0.000790             | _1 522150              |
| 601      | 1                        | 0                   | 6. 275607               | 10 020710            | 1 122260               |
| 62       | 1                        | 0                   | 6.2/309/                | 10.030/10            | -1.123209              |
| 63       |                          | 0                   | 0.541409                | 0.304202             | -1./134/0              |
| 64<br>CE | ð<br>7                   | 0                   | 3.081945                | 9.81/384             | -1.198835              |
| 65       |                          | 0                   | 4.086378                | 7.928436             | -2.442322              |
| 66       | 6                        | 0                   | 2.861502                | 7.220376             | -2.368929              |
| 67       |                          | 0                   | 4./9612/                | 7.578446             | -3.089204              |
| 68       | 6                        | 0                   | 2.528548                | 6.368042             | -3.434185              |
| 69       | 6                        | 0                   | 2.005356                | 7.292704             | -1.256600              |
| 70       | 6                        | 0                   | 1.361190                | 5.590903             | -3.38/314              |
| /1       | 6                        | 0                   | 0.839/41                | 6.514/19             | -1.20/439              |
| 72       | 1                        | 0                   | 3.194572                | 6.297108             | -4.309614              |
| 73       | 1                        | 0                   | 2.253115                | 7.934644             | -0.395572              |
| 74       | 6                        | 0                   | 0.519287                | 5.652030             | -2.267262              |
| 75       | 1                        | 0                   | 1.116950                | 4.919946             | -4.227256              |
| 76       | 1                        | 0                   | 0.192286                | 6.559318             | -0.316146              |
|          | 7                        | 0                   | -0.608371               | 4.806066             | -2.176939              |
| 78       | 6                        | 0                   | -0.501138               | 3.398374             | -1.815925              |
| .79      | 7                        | 0                   | -1.809335               | 5.246427             | -1.644169              |
| 80       | 6                        | 0                   | -0.155623               | 2.579002             | -3.052162              |
| 81       | 6                        | 0                   | 0.752481                | 3.156085             | -0.980244              |
| 82       | 6                        | 0                   | -1.816954               | 2.994610             | -1.122818              |
| 83       | 6                        | 0                   | -2.517125               | 4.318266             | -1.110391              |
| 84       | 6                        | 0                   | 1.280077                | 2.256707             | -3.097685              |
| 85       | 6                        | 0                   | 1.848525                | 2.621263             | -1.803010              |
| 86       | 6                        | 0                   | -1.022344               | 1.729534             | -3.627620              |
| 87       | 6                        | 0                   | 0.712721                | 2.839122             | 0.324384               |
| 88       | 6                        | 0                   | -1.704486               | 2.466795             | 0.296251               |
| 89       | 6                        | 0                   | -2.624880               | 1.893912             | -1.781354              |
| 90       | 6                        | 0                   | -3.784258               | 4.591383             | -0.426249              |
| 91       | 6                        | 0                   | -3.222181               | 1.003759             | -0.770048              |
| 92       | 6                        | 0                   | -2.651724               | 1.365831             | 0.527419               |
| 93       | 6                        | 0                   | 1.728519                | 1.170058             | -3.751774              |
| 94       | 6                        | 0                   | -0.541013               | 0.540652             | -4.355463              |
| 95       | 6                        | 0                   | 1.781926                | 2.028930             | 0.934929               |
| 96       | 6                        | 0                   | -0.552034               | 2.488803             | 0.985298               |
| 97       | 6                        | 0                   | -2.292614               | 1.378803             | -2.977070              |
| 98       | 6                        | 0                   | 2.824436                | 1.872812             | -1.258445              |
| 99       | 6                        | 0                   | -4.953261               | 3.880723             | -0.743466              |
| 100      | 6                        | 0                   | -3.823518               | 5.569536             | 0.579316               |

Supplementary Material (ESI) for New Journal of Chemistry.

-2.396480

3.320736

2.796185

2.792681

0.774565

-3.488535 -0.283222 -1.050309

-2.587521 -0.029236 -3.296093

0.416543

1.566365

1.1770061.1734501.969659-0.2663791.4580892.000118

0.679141 -1.968013

0.342591 -3.160856

0.272370 -4.420151

1.445290

0.179778

|     | This journal is © The Roy | al Society of Chem | istry and The Centre N | ational de la Rechero | che Scientifique, 2006 |
|-----|---------------------------|--------------------|------------------------|-----------------------|------------------------|
| 110 | 6                         | 0                  | -1.509248              | -0.548072             | -4.150948              |
| 111 | 6                         | 0                  | -6.148380              | 4.140908              | -0.056034              |
| 112 | 6                         | 0                  | -5.017920              | 5.826887              | 1.269084               |
| 113 | 1                         | 0                  | -4.943284              | 3.118346              | -1.538218              |
| 114 | 1                         | 0                  | -2.909598              | 6.129236              | 0.842703               |
| 115 | 6                         | 0                  | -3.204536              | -1.329067             | -0.052051              |
| 116 | 6                         | 0                  | -3.160470              | -0.825365             | -2.377708              |
| 117 | 6                         | 0                  | -1.079446              | -1.814611             | -4.005046              |
| 118 | 6                         | 0                  | -2.687976              | -0.996857             | 1.144831               |
| 119 | 6                         | 0                  | -1.147773              | 0.466927              | 2.223533               |
| 120 | 6                         | 0                  | 3.268878               | 0.184589              | 0.361717               |
| 121 | 6                         | 0                  | 3.596799               | -0.366525             | -0.964959              |
| 122 | 6                         | 0                  | 2 497881               | -1 068850             | -3 463269              |
| 123 | 6                         | 0                  | 1 618333               | -0 084287             | 2 144105               |
| 124 | 6                         | 0                  | 1 249250               | -1 112847             | -4 246630              |
| 125 | 6                         | 0                  | -6 188173              | 5 122333              | 0 948527               |
| 126 | 1                         | 0                  | -7 0/9233              | 3 555245              | -0.301/16              |
| 120 | 1                         | 0                  | -5 035845              | 6 591381              | 2 06/991               |
| 120 | I<br>6                    | 0                  | -2 700643              | -2 512680             | -0 766736              |
| 120 | 6                         | 0                  | -2.700043              | -2.207045             | -2.206014              |
| 120 | 6                         | 0                  | -2.003214              | -2.207945             | -2.200914              |
| 101 | 6                         | 0                  | -1.691906              | -2.001009             | -2.902175              |
| 131 | 6                         | 0                  | -1.616968              | -1.820001             | 1./36114               |
| 132 | 6                         | 0                  | -0.666813              | -0.914256             | 2.406870               |
| 133 | 6                         | 0                  | 0.652826               | -1.1/560/             | 2.362614               |
| 134 | 6                         | 0                  | 0.364588               | -2.10/386             | -4.046430              |
| 135 | 6                         | 0                  | 3.329386               | -1.655423             | -1.242940              |
| 136 | 6                         | 0                  | 2.754212               | -2.022815             | -2.549264              |
| 137 | 6                         | 0                  | 2.703701               | -0.602129             | 1.294698               |
| 138 | 7                         | 0                  | -7.367652              | 5.400049              | 1.676824               |
| 139 | 6                         | 0                  | -0.623446              | -3.502262             | -2.385172              |
| 140 | 6                         | 0                  | -1.732627              | -3.272204             | -0.224186              |
| 141 | 6                         | 0                  | 0.646072               | -3.151350             | -3.044689              |
| 142 | 6                         | 0                  | 1.785150               | -3.112304             | -2.330866              |
| 143 | 6                         | 0                  | -1.163933              | -2.908432             | 1.085731               |
| 144 | 6                         | 0                  | 1.145605               | -2.367515             | 1.650701               |
| 145 | 6                         | 0                  | 2.413668               | -2.012803             | 0.992387               |
| 146 | 6                         | 0                  | 2.714629               | -2.519630             | -0.217487              |
| 147 | 1                         | 0                  | -7.278232              | 5.712904              | 2.644932               |
| 148 | 6                         | 0                  | -8.657763              | 5.371186              | 1.102230               |
| 149 | 6                         | 0                  | -0.644709              | -3.789277             | -1.070446              |
| 150 | 6                         | 0                  | 1.761679               | -3.419921             | -0.888901              |
| 151 | 6                         | 0                  | 0.280238               | -3.198763             | 1.044273               |
| 152 | 8                         | 0                  | -8.808555              | 5.437068              | -0.118803              |
| 153 | 6                         | 0                  | -9.863244              | 5.342673              | 2.005598               |
| 154 | 6                         | 0                  | 0.602364               | -3.743994             | -0.288044              |
| 155 | 6                         | 0                  | -9.976851              | 4.008776              | 2.764138               |
| 156 | 1                         | 0                  | -10.792722             | 5.512322              | 1.412488               |
| 157 | 1                         | 0                  | -9.789827              | 6.186280              | 2.731995               |
| 158 | 6                         | 0                  | -10.021352             | 2.795370              | 1.819148               |
| 159 | 1                         | 0                  | -10.904226             | 4.031062              | 3.384697               |
| 160 | 1                         | 0                  | -9.116907              | 3.911785              | 3.467602               |
| 161 | 6                         | 0                  | -10.402031             | 1.481141              | 2.516617               |
| 162 | 1                         | 0                  | -9.044628              | 2.675748              | 1.291396               |
| 163 | 1                         | 0                  | -10.785140             | 2.997316              | 1.030235               |
| 164 | 16                        | 0                  | -9.104918              | 0.961294              | 3.685505               |
| 165 | 1                         | 0                  | -10.550063             | 0.684699              | 1.750483               |
| 166 | 1                         | 0                  | -11.374517             | 1.596167              | 3.049050               |
| 167 | - 6                       | 0                  | -7.961586              | -0.371453             | 3.242944               |
| 168 | 6                         | 0                  | -7.191313              | -1.044254             | 4.125248               |
| 169 | 16                        | 0<br>0             | -7.794484              | -0.934054             | 1.506064               |
| 170 | 16                        | 0<br>0             | -6.190872              | -2.390665             | 3.383352               |
| 171 | -0                        | 0<br>0             | -6 612554              | -2.311249             | 1.617207               |
| 172 | 16                        | n<br>N             | -7 144707              | -0 710800             | 5 904240               |
| 173 | - °<br>6                  | 0<br>0             | -6.074963              | -1.673552             | 7.007254               |

|     | This journal is © The Ro | Supplementary Materioval Society of Chemis | ial (ESI) for New Jour<br>try and The Centre Na | nal of Chemistry.<br>ational de la Rechero | che Scientifique, 2006 |
|-----|--------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------|------------------------|
| 174 | 6                        | 0                                          | -6.155191                                       | -3.080035                                  | 0.625888               |
| 175 | 16                       | 0                                          | -6.515599                                       | -2.943311                                  | -1.147355              |
| 176 | 16                       | 0                                          | -5.006297                                       | -4.482733                                  | 0.725231               |
| 177 | 1                        | 0                                          | -5.475876                                       | -2.406983                                  | 6.422425               |
| 178 | 1                        | 0                                          | -6.701330                                       | -2.221723                                  | 7.746231               |
| 179 | 1                        | 0                                          | -5.384756                                       | -0.987516                                  | 7.546128               |
| 180 | 6                        | 0                                          | -5.465074                                       | -4.237550                                  | -1.911128              |
| 181 | 6                        | 0                                          | -4.759356                                       | -4.978646                                  | -1.025912              |
| 182 | 16                       | 0                                          | -3.604631                                       | -6.327149                                  | -1.372499              |
| 183 | 16                       | 0                                          | -5.418682                                       | -4.392025                                  | -3.713912              |
| 184 | 6                        | 0                                          | -3.166388                                       | -6.982081                                  | -3.008415              |
| 185 | 6                        | 0                                          | -6.269506                                       | -3.169611                                  | -4.766109              |
| 186 | 6                        | 0                                          | -1.635866                                       | -7.031269                                  | -3.168314              |
| 187 | 6                        | 0                                          | -5.565505                                       | -1.808881                                  | -4.633131              |
| 188 | 1                        | 0                                          | -3.584680                                       | -6.360672                                  | -3.828713              |
| 189 | 1                        | 0                                          | -3.591082                                       | -8.003570                                  | -3.134172              |
| 190 | 1                        | 0                                          | -7.336422                                       | -3.079009                                  | -4.460342              |
| 191 | 1                        | 0                                          | -6.249137                                       | -3.506537                                  | -5.827109              |
| 192 | 6                        | 0                                          | -0.933296                                       | -8.007655                                  | -2.209657              |
| 193 | 6                        | 0                                          | -6.224090                                       | -0.728907                                  | -5.506609              |
| 194 | 1                        | 0                                          | -1.219551                                       | -6.004599                                  | -3.049110              |
| 195 | 1                        | 0                                          | -1.403868                                       | -7.343188                                  | -4.214322              |
| 196 | 1                        | 0                                          | -4.492527                                       | -1.904282                                  | -4.923891              |
| 197 | 1                        | 0                                          | -5.599654                                       | -1.478875                                  | -3.569444              |
| 198 | 6                        | 0                                          | 0.570669                                        | -8.170237                                  | -2.489965              |
| 199 | 6                        | 0                                          | -5.563025                                       | 0.653575                                   | -5.369589              |
| 200 | 1                        | 0                                          | -1.422122                                       | -9.007306                                  | -2.299927              |
| 201 | 1                        | 0                                          | -1.064565                                       | -7.676495                                  | -1.152411              |
| 202 | 1                        | 0                                          | -7.308559                                       | -0.645098                                  | -5.255493              |
| 203 | 1                        | 0                                          | -6.162074                                       | -1.055240                                  | -6.573116              |
| 204 | 6                        | 0                                          | 1.379453                                        | -6.889632                                  | -2.241491              |
| 205 | 6                        | 0                                          | -5.850609                                       | 1.342760                                   | -4.028659              |
| 206 | 1                        | 0                                          | 0.724889                                        | -8.511093                                  | -3.541191              |
| 207 | 1                        | 0                                          | 0.973812                                        | -8.974724                                  | -1.828024              |
| 208 | 1                        | 0                                          | -5.940378                                       | 1.315364                                   | -6.185586              |
| 209 | 1                        | 0                                          | -4.460900                                       | 0.559981                                   | -5.518556              |
| 210 | 1                        | 0                                          | 2.471940                                        | -7.076851                                  | -2.365788              |
| 211 | 1                        | 0                                          | 1.218640                                        | -6.508011                                  | -1.207286              |
| 212 | 1                        | 0                                          | 1.103694                                        | -6.083700                                  | -2.958359              |
| 213 | 1                        | 0                                          | -6.944986                                       | 1.482335                                   | -3.873387              |
| 214 | 1                        | 0                                          | -5.373300                                       | 2.349681                                   | -3.990249              |
| 215 | 1                        | 0                                          | -5.458991                                       | 0.761813                                   | -3.163927              |

# Computed total energies of target or optimized structures

| SCF Done: | E(RB+HF-PW91) | = | -11241.5068365 | A.U. after | 42 cycles |
|-----------|---------------|---|----------------|------------|-----------|
|-----------|---------------|---|----------------|------------|-----------|

# **Molecular Orbital Calculations**

Molecular Orbital calculations were carried out at the B3PW91/6-31G\* level of theory using the GAUSSIAN 03 software.

The flexibility of the spacers in 7 leads to a high number of conformations displaying similar energies. A conformational search was conducted by using simulated annealing with the MM+ force field as implemented in Hyperchem leading to a minimum in energy that corresponds to a bent conformation with the center of the TTF moieties placed at 7.0 and 7.2 Å respectively from the center of the C<sub>60</sub> core (Figure). Conformations with the two TTF moieties separated away from the C<sub>60</sub> are c.a. 22-24 kcal/mol less stable than the geometry shown in Figure 1 while those conformations with one TTF close to the fullerene spheroid and the other one separated from it are ca 12 kcal/mol above the more stable conformation.

Molecular orbitals calculated at the B3PW91/6-31G\* level on the basis of the optimized structure are also shown in Figure 1. It can be seen that the HOMO is placed on one of two TTF groups, whereas the LUMO spreads over the  $C_{60}$  spheroid, which predicts the charge-separated states as  $(TTF)^{\bullet+}-(spacer)-Pz(C_{60})^{\bullet-}-(spacer)-TTF$ .



Optimized structure and the HOMOs and LUMO of 7 calculated by B3PW91/6-31G\* level.