Sulfoniumcalixpyrrole: The decoration of a calix[4]pyrrole host with positive charges boosts affinity and selectivity of anion binding in DMSO solvent

Martin Valik, Vladimir Král, Eberhardt Herdtweck, and Franz P. Schmidtchen

C o n t e n t s

- Table S2- Final Coordinates and Equivalent Isotropic Thermal
Parameters of the non-Hydrogen atoms for: Compound 6
- Table S3- Hydrogen Atom Positions and Isotropic Thermal
Parameters for: Compound 6
- Table S4 (An) isotropic Thermal Parameters for: Compound 6
- Table S5 Bond Distances (Å) for: Compound 6
- Table S6 Bond Angles (Degrees) for: Compound 6

Molecular structure of the thiopyrano calixpyrrole $(\mathbf{6})$


```
Crystal Data
```

Formula		C36 H44 N4	S4, 2(C3 H6 O)
Formula Weight			777.19
Crystal System			Orthorhombic
Space group		Pbca	(No. 61)
a, b, c [Angstrom]	16.0948(1)	26.2675(1) 19.2980(1)
V [Ang**3]			8158.62(7)
Z			8
D(calc) [g/cm**3]			1.265
Mu(MoKa) [/mm]			0.274
F(000)			3328
Crystal Size [mm]		0.25 x	0.30 x 0.33

Data Collection

Temperature (K)			173
Radiation [Angstrom]		МоКа	0.71073
Theta Min-Max [Deg]			1.5, 25.4
Dataset	-19:	19 ; -31:	31 ; -23: 23
Tot., Uniq. Data, R(int)		152651 ,	7476, 0.044
Observed data [I > 2.0 sigma(I)]			6473

Refinement

Nref, Npar	7476, 670
R, wR2, S	0.0354, 0.0908, 1.02
$w = 1/[S^2^{(FO^2^)} + (0.0424P)^2 + 5.4301P]$	WHERE P=(FO^2^+2FC^2^)/3
Max. and Av. Shift/Error	0.08, 0.00
Min. and Max. Resd. Dens. [e/Ang^3]	-0.45, 0.39

Table S2 - Final Coordinates and Equivalent Isotropic Thermal Parameters of the non-Hydrogen atoms for ${\ensuremath{\mathsf{Compound}}}\xspace{\ensuremath{\mathsf{6}}}$

Atom	Х	У	Z	U(eq) [Ang^2]
S1	0.19061(3)	0.38997(2)	0.07074(2)	0.0354(2)
S2	0.04394(3)	0.56831(2)	0.31661(3)	0.0431(2)
S3	0.21236(3)	0.32264(2)	0.74461(2)	0.0353(2)
S4	0.46284(3)	0.15612(2)	0.51091(3)	0.0404(2)
Nl	0.21644(8)	0.41988(5)	0.30271(7)	0.0200(4)
N2	0.19176(9)	0.41791(5)	0.48609(7)	0.0251(4)
NЗ	0.31952(8)	0.30798(5)	0.50621(7)	0.0206(4)
N4	0.31256(8)	0.30017(5)	0.32311(7)	0.0212(4)
C1	0.20181(9)	0.37438(6)	0.26937(8)	0.0200(4)
C2	0.12495(10)	0.35807(6)	0.29020(8)	0.0243(5)
C3	0.09219(10)	0.39482(6)	0.33676(9)	0.0249(5)
C4	0.14990(10)	0.43279(6)	0.34351(8)	0.0205(4)
С5	0.15313(10)	0.47847(6)	0.39154(8)	0.0231(4)
C6	0.20409(10)	0.46392(6)	0.45412(8)	0.0240(5)
С7	0.26473(12)	0.48841(7)	0.49085(9)	0.0322(6)
C8	0.28905(12)	0.45629(7)	0.54638(9)	0.0313(5)
С9	0.24326(10)	0.41268(6)	0.54233(8)	0.0236(5)
C10	0.23791(10)	0.36530(6)	0.58663(8)	0.0219(5)
C11	0.24589(10)	0.31952(6)	0.53913(7)	0.0198(4)
C12	0.18792(10)	0.28611(6)	0.51499(8)	0.0244(5)
C13	0.22700(10)	0.25305(6)	0.46690(9)	0.0250(5)
C14	0.30896(9)	0.26715(6)	0.46212(8)	0.0196(4)
C15	0.37827(9)	0.24646(6)	0.41711(8)	0.0203(4)
C16	0.38036(9)	0.27485(6)	0.34848(8)	0.0220(5)

Table S2	(cont.) - Fin	al Coordinate	s and Equiva	alent Isotropic 🗆	「hermal
	Par	ameters of th	e non-Hydrog	gen atoms for Cor	npound 6
Atom	x	У	Z	U(eq) [Ang^2]	
C17	0.44168(11)	0.27954(7)	0.29962(9)	0.0302(5)	
C18	0.40950(11)	0.30879(7)	0.24376(9)	0.0305(5)	
C19	0.32922(10)	0.32136(6)	0.25961(8)	0.0220(5)	
C20	0.26408(9)	0.35123(6)	0.21958(8)	0.0209(4)	
C21	0.21856(11)	0.31435(6)	0.16963(9)	0.0261(5)	
C22	0.15191(12)	0.33892(7)	0.12469(9)	0.0308(5)	
C23	0.24928(12)	0.42552(7)	0.13450(9)	0.0309(5)	
C24	0.30824(10)	0.39266(7)	0.17640(9)	0.0247(5)	
C25	0.19424(12)	0.52493(6)	0.35680(9)	0.0276(5)	
C26	0.14713(13)	0.54584(7)	0.29512(10)	0.0356(6)	
C27	0.00608(12)	0.51153(7)	0.35936(11)	0.0372(6)	
C28	0.06402(11)	0.49276(7)	0.41598(9)	0.0302(5)	
C29	0.15229(11)	0.36596(6)	0.62302(9)	0.0254(5)	
C30	0.13758(11)	0.32323(7)	0.67453(9)	0.0294(5)	
C31	0.30531(11)	0.32243(7)	0.69199(9)	0.0305(5)	
C32	0.30779(11)	0.36655(7)	0.64103(9)	0.0269(5)	
C33	0.46288(10)	0.25285(7)	0.45384(9)	0.0253(5)	
C34	0.46831(11)	0.22421(8)	0.52236(9)	0.0326(6)	
C35	0.36536(12)	0.15473(7)	0.46439(10)	0.0328(6)	
C36	0.36383(11)	0.18927(6)	0.40138(9)	0.0259(5)	
040	-0.00829(10)	0.13958(7)	0.45377(8)	0.0556(5)	
*C41	0.02548(16)	0.17709(11)	0.34568(13)	0.0527(9)	
*C42	0.03594(15)	0.13891(13)	0.40192(14)	0.0416(8)	
*C431	0.10101(19)	0.10054(13)	0.39128(15)	0.0792(11)	
*C432	0.10101(19)	0.10054(13)	0 39128(15)	0 0792(11)	
*C44	0.0361(10)	0.1090(9)	0.33120(13) 0.4321(12)	0.053(7)	
*C45	0.0265(14)	0.0544(8)	0.4467(12)	0.033(7) 0.078(9)	
010	0.0200(11)	0.0011(0)	0.1107(12)	0.070(3)	
050	0.38098(8)	0.46986(5)	0.30942(7)	0.0374(4)	
C51	0.43441(11)	0.45082(7)	0.34502(10)	0.0350(6)	
C52	0.41794(14)	0.40695(8)	0.39165(11)	0.0456(7)	
C53	0.52168(15)	0.46926(13)	0.33959(19)	0.0933(15)	

U(eq) = 1/3 of the trace of the orthogonalized U Tensor Starred Atom sites have a S.O.F less than 1.0

Table S3- Hydrogen Atom Positions and Isotropic Thermal
Parameters for Compound 6

Atom	х	У	Z	U(iso) [Ang^2]
Н1	0.2620(13)	0.4356(8)	0.3021(10)	0.033(5)
Н2	0.1610(12)	0.3955(8)	0.4730(10)	0.032(5)
НЗ	0.3657(12)	0.3243(7)	0.5128(9)	0.026(5)
H4	0.2686(12)	0.3030(7)	0.3439(10)	0.029(5)
H21	0.0969(11)	0.3281(7)	0.2739(9)	0.026(4)
Н31	0.0419(12)	0.3930(7)	0.3589(10)	0.028(5)
H71	0.2868(12)	0.5206(8)	0.4796(10)	0.037(5)
H81	0.3296(13)	0.4628(8)	0.5801(11)	0.041(6)
H121	0.1318(13)	0.2848(7)	0.5279(10)	0.034(5)
H131	0.2011(11)	0.2259(7)	0.4440(9)	0.029(5)
H171	0.4959(13)	0.2656(8)	0.3026(10)	0.041(5)
H181	0.4372(13)	0.3189(8)	0.2037(11)	0.042(6)
H211	0.2613(12)	0.2985(7)	0.1398(9)	0.030(5)
H212	0.1950(11)	0.2865(7)	0.1960(9)	0.025(4)

Table	S 3	(cont.)	-	Hydrogen Parametei	Atom rs for	Positions Compound	and 6	Isotropic	Thermal
Atom		х		У		Z		U(iso) [.	Ang^2]
H221 H222 H231 H232 H241		0.1061 0.1299 0.2816 0.2088 0.3419	(12 (13 (13 (12 (12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	513(7) 153(8) 515(8) 431(7)	0.1530 0.0924 0.1064 0.1649 0.2077	(9) (11) (11) (10) (9)	0.028 0.044 0.044 0.030 0.027	(5) (6) (6) (5)
H242 H251 H252 H261		0.3455 0.1981 0.2513 0.1437	(11 (11 (12 (12) 0.3) 0.55 2) 0.51 2) 0.52	764 (6) 506 (7) 159 (7) 208 (8)	0.1447 0.3924 0.3425 0.2590	(9) (9) (9) (11)	0.024 0.027 0.030 0.040	(4) (5) (5) (5)
H262 H271 H272 H281 H282 H291 H292		$\begin{array}{c} 0.1771 \\ -0.0037 \\ -0.0463 \\ 0.0380 \\ 0.0700 \\ 0.1485 \\ 0.1074 \end{array}$	(12) (12) (14) (12) (12) (12) (11) (11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	752(8) 353(8) 213(8) 631(8) 200(8) 983(7)	0.2753 0.3241 0.3780 0.4398 0.4522 0.6472 0.5887	(10) (10) (11) (10) (10) (10) (9)	0.042 0.036 0.045 0.034 0.035 0.029 0.024	(6) (5) (5) (5) (5) (4)
H301 H302 H311 H312 H321 H322		0.1399 0.0832 0.3498 0.3092 0.3025 0.3625	(11 (13 (13 (12 (11 (12)	0.29 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.34 0.35 0.36	904(7) 269(7) 253(8) 388(8) 976(7) 671(7)	0.6522 0.6968 0.7242 0.6672 0.6659 0.6167	(10) (10) (11) (11) (10) (9) (10)	0.030 0.036 0.040 0.038 0.026 0.032	(5) (5) (5) (5) (5) (5)
H331 H332 H341 H342 H351 H352 H361 H362		0.5073 0.4755 0.5220 0.4238 0.3210 0.3587 0.4054 0.3102	(11 (13 (12 (12 (12 (14 (11) (12	0.24 0.28 0.28 0.28 0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.24 0.23 0.16 0.17 0.18	410(6) 393(7) 306(7) 353(7) 539(7) 193(9) 788(6) 350(7)	0.4236 0.4613 0.5437 0.5536 0.4960 0.4510 0.3692 0.3783	(9) (9) (10) (10) (10) (11) (9) (10)	0.021 0.028 0.036 0.032 0.035 0.050 0.025 0.030	(4) (5) (5) (5) (5) (6) (4) (5)
*H413 *H432 *H433 *H431 *H411 *H412 *H434 *H435 *H435 *H455 *H453		0.0772 0.1556 0.0932 0.0977 -0.0197 0.0120 0.0931 0.1516 0.1063 0.0759 0.0196 -0.0226		0.19 0.11 0.08 0.07 0.20 0.15 0.06 0.12 0.04 0.03 0.04	963 170 342 748 005 596 584 985 284 419 358 491	0.3400 0.3927 0.3461 0.4279 0.3578 0.3022 0.3664 0.4194 0.3578 0.4799 0.4031 0.4759	()	0.079 0.119 0.119 0.079 0.079 0.119 0.119 0.119 0.117 0.117	0 0 0 0 0 0 0 0 0 0 0 0 0 0
H521 H522 H523 H531 H532 H533		0.3585 0.4499 0.4345 0.5427 0.5234 0.5563		0.40 0.41 0.37 0.47 0.49 0.49	056 110 753 775 998 426	0.4027 0.4345 0.3685 0.3859 0.3104 0.3188		0.068 0.068 0.140 0.140 0.140	0 0 0 0 0

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Starred Atom sites have a S.O.F less than $1.0\,$

Table S4 - (An)isotropic Thermal Parameters for Compound 6								
Atom	U(1,1) or 1	U U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)		
S1 S2 S3 S4 N1 N2 N3 N4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C33 C24 C25 C26 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C17 C18 C19 C20 C21 C22 C3 C24 C25 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C3 C24 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C10 C11 C12 C23 C24 C25 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C15 C16 C17 C18 C22 C23 C24 C25 C10 C11 C12 C23 C24 C25 C10 C11 C12 C23 C24 C25 C10 C11 C12 C23 C24 C25 C26 C27 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C21 C22 C23 C24 C25 C26 C27 C28 C29 C23 C24 C25 C26 C27 C28 C29 C23 C24 C25 C27 C28 C29 C23 C24 C25 C27 C28 C29 C23 C27 C28 C29 C23 C27 C28 C29 C23 C27 C28 C29 C23 C27 C28 C29 C23 C27 C28 C29 C27 C28 C29 C27 C27 C28 C29 C27 C27 C27 C28 C27 C27 C27 C28 C27 C27 C28 C27 C27 C27 C28 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	$\begin{array}{c}\\ 0.0380(3)\\ 0.0528(3)\\ 0.0410(3)\\ 0.0408(3)\\ 0.0189(7)\\ 0.0319(8)\\ 0.0183(7)\\ 0.0174(7)\\ 0.0212(8)\\ 0.0233(8)\\ 0.0214(8)\\ 0.0235(8)\\ 0.0235(8)\\ 0.0235(8)\\ 0.0235(8)\\ 0.0235(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0242(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0220(7)\\ 0.0165(8)\\ 0.0220(7)\\ 0.0165(8)\\ 0.0220(7)\\ 0.0165(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0212(8)\\ 0.0201(8)\\ 0.0220(7)\\ 0.0165(8)\\ 0.0212(8)\\ 0.0230(8)\\ 0.0230(8)\\ 0.0230(8)\\ 0.0337(10)\\ 0.0324(9)\\ 0.0313(9)\\ 0.0313(9)\\ 0.0313(9)\\ 0.0313(9)\\ 0.0313(9)\\ 0.0304(9)\\ 0.0304(9)\\ 0.0396(10)\\ 0.0396(1$	$\begin{array}{c}\\ 0.0453(3)\\ 0.0271(2)\\ 0.0452(3)\\ 0.0452(3)\\ 0.0443(3)\\ 0.0195(7)\\ 0.0186(7)\\ 0.0206(7)\\ 0.0239(7)\\ 0.0188(7)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0261(8)\\ 0.0201(7)\\ 0.0184(7)\\ 0.0184(7)\\ 0.0188(8)\\ 0.0201(7)\\ 0.0184(7)\\ 0.0184(8)\\ 0.0201(7)\\ 0.0184(8)\\ 0.0230(8)\\ 0.0238(9)\\ 0.0230(8)\\ 0.0230(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0219(8)\\ 0.0223(8)\\ 0.0219(8)\\ 0.0223(8)\\ 0.0224(8)\\ 0.0231(8)\\ 0.0231(8)\\ 0.0227(8)\\ 0.0222(8)\\ 0.0233(8)\\ 0.0222(8)\\ 0.0233(8)\\ 0.0222(8)\\ 0.0233(8)\\ 0.0222(8)\\ 0.0233(8)\\ 0.0222(8)\\ 0.0233(8)\\ 0.0244(9)\\ 0.0227(8)\\ 0.0233(8)\\ 0.0246(10)\\ 0.0257(9)\\ 0.0360(10)\\ 0.0257(9)\\ 0.0360(10)\\ 0.0296(9)\\ 0.0340(10)\\ 0.0231(9)\\ 0.02$	$\begin{array}{c}\\ 0.0229(2)\\ 0.0495(3)\\ 0.0197(2)\\ 0.0360(3)\\ 0.0215(7)\\ 0.0247(7)\\ 0.0229(7)\\ 0.0229(7)\\ 0.0229(7)\\ 0.0222(7)\\ 0.0220(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0273(8)\\ 0.0214(8)\\ 0.0214(8)\\ 0.0214(8)\\ 0.0275(8)\\ 0.0255(9)\\ 0.0255(9)\\ 0.0189(8)\\ 0.0196(8)\\ 0.0196(8)\\ 0.0172(7)\\ 0.0255(9)\\ 0.0255(9)\\ 0.0255(9)\\ 0.0255(9)\\ 0.0255(8)\\ 0.0195(7)\\ 0.0259(8)\\ 0.0275(8)\\ 0.0195(7)\\ 0.0259(8)\\ 0.0275(8)\\ 0.0275(8)\\ 0.0275(8)\\ 0.0275(8)\\ 0.0259(8)\\ 0.0224(8)\\ 0.0203(8)\\ 0.0202(7)\\ 0.0248(8)\\ 0.0264(9)\\ 0.0220(8)\\ 0.0220(8)\\ 0.0220(8)\\ 0.0228(8)\\ 0.0243(9)\\ 0.0252(8)\\ 0.0247(9)\\ 0.0356(10)\\ \end{array}$	$\begin{array}{c}\\ 0.0030(2)\\ 0.0048(2)\\ 0.0033(2)\\ 0.0140(2)\\ -0.0018(5)\\ -0.0008(6)\\ -0.0025(5)\\ 0.0002(6)\\ -0.003(5)\\ 0.0002(6)\\ -0.0037(7)\\ 0.0002(7)\\ 0.0002(7)\\ 0.0002(6)\\ -0.0013(6)\\ -0.0013(6)\\ -0.0014(7)\\ -0.0033(7)\\ -0.0036(6)\\ -0.0022(6)\\ -0.0014(7)\\ -0.0036(6)\\ -0.0022(6)\\ -0.0022(6)\\ -0.0022(6)\\ -0.0014(7)\\ -0.0036(6)\\ -0.0022(6)\\ 0.0002(6)\\ -0.0002(6)\\ -0.0004(6)\\ -0.0004(6)\\ -0.0002(6)\\ 0.0066(8)\\ 0.0069(8)\\ -0.0005(6)\\ -0.0005(6)\\ -0.0005(6)\\ -0.0005(6)\\ -0.0005(6)\\ -0.0054(8)\\ 0.0049(8)\\ 0.0014(7)\\ 0.0050(8)\\ -0.0005(8)\\ -0.0005(7)\\ -0.0013(7)\\ -0.0026(7)\\ 0.0013(7)\\ -0.0007(8)\\ -0.0001(7)\\ 0.0013(8)\\ 0.0009(8)\\ -0.0009(8)\\$	$\begin{array}{c} -0.0030(2)\\ -0.0087(2)\\ -0.0003(2)\\ 0.0044(2)\\ 0.0001(5)\\ -0.0046(6)\\ 0.0001(5)\\ -0.0026(5)\\ -0.0021(6)\\ 0.0010(7)\\ 0.0059(7)\\ 0.0012(6)\\ 0.0012(6)\\ 0.0033(7)\\ 0.0012(6)\\ 0.0033(7)\\ -0.0005(8)\\ -0.0005(8)\\ -0.0005(8)\\ -0.0005(8)\\ -0.0006(7)\\ -0.0026(6)\\ 0.0005(6)\\ 0.0007(6)\\ 0.0005(6)\\ 0.0005(6)\\ 0.0000(7)\\ -0.0026(6)\\ 0.0005(6)\\ 0.0005(6)\\ 0.0005(6)\\ 0.0005(6)\\ 0.0005(6)\\ 0.00017(6)\\ 0.0000(7)\\ -0.0008(6)\\ 0.0004(7)\\ -0.0012(7)\\ 0.0022(8)\\ 0.0022(8)\\ 0.0022(8)\\ 0.0022(8)\\ 0.0022(7)\\ 0.0024(7)\\ 0.0008(9)\\ 0.0030(9)\\ 0.0094(8)\\ 0.0012(7)\\ -0.0048(7)\\ -0.0048(7)\\ -0.0048(7)\\ -0.0042(7)\\ 0.0028(7)\\ -0.0048(7)\\ -0.0042(7)\\ 0.0006(7)\\ -0.0019(7)\\ 0.0053(8)\\ \end{array}$	$\begin{array}{c}\\ 0.0093(2)\\ 0.0104(2)\\ 0.0052(2)\\ 0.0180(2)\\ -0.0011(6)\\ -0.0022(6)\\ 0.0028(6)\\ 0.0028(6)\\ 0.0014(6)\\ -0.0037(7)\\ -0.0011(7)\\ 0.0027(6)\\ 0.0022(7)\\ 0.0022(7)\\ 0.0022(7)\\ 0.0008(7)\\ -0.0093(8)\\ -0.0073(8)\\ 0.0019(7)\\ 0.0021(6)\\ 0.0021(6)\\ 0.0038(6)\\ -0.0038(6)\\ -0.0038(6)\\ -0.0038(6)\\ -0.0038(6)\\ 0.0019(7)\\ 0.0025(6)\\ 0.0025(6)\\ 0.0025(6)\\ 0.0025(6)\\ 0.0031(7)\\ 0.0065(8)\\ 0.0013(6)\\ 0.0025(6)\\ 0.0025(6)\\ 0.0031(7)\\ 0.0065(8)\\ 0.0013(6)\\ 0.0025(6)\\ 0.0031(7)\\ 0.0065(8)\\ 0.0013(6)\\ 0.0025(6)\\ 0.0031(7)\\ 0.0065(8)\\ 0.0025(6)\\ 0.0031(7)\\ 0.0016(8)\\ 0.0023(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.0008(7)\\ -0.00008(7)\\ -0.00008(7)\\ -0.008(7)\\ -0.008(7)\\ -0.008(7)\\ -0.008(7)\\ -0.008(7)\\$		
O40 C41 C42 C431 C432 C44 C45	0.0521(9) 0.0407(14) 0.0322(12) 0.0715(18) 0.0715(18) 0.034(9) 0.075(15)	0.0739(11) 0.0723(19) 0.0592(18) 0.103(2) 0.103(2) 0.068(14) 0.075(15)	0.0407(8) 0.0451(15) 0.0335(13) 0.0632(17) 0.0632(17) 0.058(13) 0.084(16)	-0.0014(8) 0.0039(13) -0.0090(12) -0.0093(16) -0.0093(16) -0.036(11) -0.042(12)	0.0089(7) 0.0107(11) -0.0020(10) 0.0038(15) 0.0038(15) -0.010(8) -0.006(12)	0.0138(9) 0.0069(13) 0.0085(12) 0.0365(17) 0.0365(17) 0.031(9) 0.017(11)		
050 C51 C52 C53	0.0292(7) 0.0289(9) 0.0485(12) 0.0350(13)	0.0387(7) 0.0353(10) 0.0403(11) 0.112(3)	0.0442(7) 0.0407(10) 0.0479(12) 0.133(3)	0.0032(6) 0.0002(8) 0.0056(9) 0.066(2)	-0.0039(6) 0.0002(8) -0.0063(10) -0.0216(16)	-0.0031(6) 0.0002(8) -0.0041(10) -0.0191(15)		

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

==

Table	<u>s5</u> -	Bond Distances	(Å)	for	Compound	d 6		
S1	-C22	1.8083(19)			C12	-C13	1.418(2)	1
S1	-C23	1,8104(19)			C1.3	-C14	1.373(2)	
92	-026	1 811(2)			C14	-015	1 515(2)	
02	020	1,010(2)			015	010	1 544(2)	
SZ	-027	1.810(2)			CI5	-033	1.544(2)	
S3	-C30	1.8105(18)			C15	-C36	1.550(2)	
S3	-C31	1.8081(18)			C15	-C16	1.520(2))
S4	-C34	1.804(2)			C16	-C17	1.371(2)	,
S4	-C35	1,808(2)			C17	-C18	1,421(3)	
N1	-01	1 378(2)			C18	-019	1 368(2)	
NT1	-01	1 272(2)			C10	-020	1 520(2)	
N L	-04	1.372(2)			C19 C20	-020	1.520(2)	
NZ	-06	1.3/1(2)			C20	-021	1.551(2)	
N2	-C9	1.373(2)			C20	-C24	1.544(2)	
NЗ	-C14	1.380(2)			C21	-C22	1.523(3))
NЗ	-C11	1.378(2)			C23	-C24	1.516(3)	1
N4	-C16	1.369(2)			C25	-C26	1.514(3)	1
N4	-C19	1 372(2)			C27	-C28	1 519(3)	
C1	-02	1 369(2)			C29	-030	1 518(2)	
	C2 C20	1 = 1 = (2)			021	C30	1 520(2)	
	-020	1.516(2)			C31 222	-032	1.520(3)	
CZ	-03	1.420(2)			033	-034	1.524(3)	
C3	-C4	1.369(2)			C35	-C36	1.517(3)	
C4	-C5	1.517(2)						
С5	-C28	1.556(2)			040	-C42	1.228(3)	1
С5	-C25	1.542(2)			040	-C44	1.15(2)	
C5	-06	1509(2)			C41	-C42	1 487 (4)	
C 6	-07	1 367(2)			C12	-012	1 168(1)	
00		1 410(2)			C42	C401	1 207 (1)	22
07	-08	1.419(3)			044	-0432	1.327(1)	1)
C8	-09	1.364(2)			C44	-C45	1.4/(3)	
С9	-C10	1.512(2)						
C10	-C29	1.547(2)			050	-C51	1.209(2))
C10	-C11	1.518(2)			C51	-C52	1.486(3)	1
C10	-C32	1.539(2)			C51	-C53	1.489(3)	1
C11	-C12	1 363(2)					(-)	
N1	1	0.84(2)			C31	11	0 95(2)	
NTO	117	0.04(2)			C31	11311	1 01(2)	
NZ	-HZ	0.01(2)			C31 220	-H312	1.01(2)	~ `
N3	-нз	0.867(19)			C32	-H322	0.998(19	1)
N4	-H4	0.817(19)			C32	-H321	0.950(18	3)
C2	-H21	0.960(18)			C33	-H331	0.974(17	7)
С3	-Н31	0.917(19)			C33	-НЗЗ2	0.989(18	3)
С7	-H71	0.94(2)			C34	-H342	0.981(19	3)
C.8	-н81	0.94(2)			C.34	-H341	0.97(2)	,
C12	-н121	0.94(2)			C 3 5	-#352	0.97(2)	
C12		0.027(10)			C 2 5	_U251	0.060(1)	27
017	-HIJI	0.937(10)			035	-H301	0.909(1)	2)
CI/	-H1/1	0.95(2)			036	-H362	0.9/8(19	1)
C18	-H181	0.93(2)			C36	-H361	0.953(1)	/)
C21	-H211	0.989(19)						
C21	-H212	0.968(18)			C41	-H411	0.98	
C22	-H221	0.974(19)			C41	-H412	0.98	
C22	-H222	0.95(2)			C41	-H413	0.98	
C23	-H231	1 02(2)			C431	-H431	0 98	
C23	-0000	- 02(2)			C121	_U/22	n ao	
	-HZ3Z	0.991(19)			C431	-H432	0.90	
C24	-HZ41	0.986(18)			C431	-H433	0.98	
C24	-H242	0.957(17)			C432	-H436	0.98	
C25	-H251	0.965(18)			C432	-H434	0.98	
C25	-H252	0.988(19)			C432	-H435	0.98	
C26	-H261	0.96(2)			C45	-H451	0.98	
C26	-H262	0.99(2)			C45	-H452	0.98	
C27	-H272	0 95(2)			C45	-H453	0 98	
027	_U071	0.00(2)			040	11400	0.90	
$C \leq I$		$\cup \cdot \Im \circ (\angle)$				TT F O O	0 00	
CZ8	-HZ81	1.00(2)			052	-н523	0.98	
C28	-H282	1.00(2)			C52	-H522	0.98	
C29	-H291	0.971(19)			C52	-H521	0.98	
C29	-H292	0.980(18)			C53	-H532	0.98	
C30	-H302	0.98(2)			C53	-H531	0.98	
C30	-H301	0.965(19)			C53	-H533	0.98	

Table	<u>s6</u> -	Bond Angles	(Degrees) fo	or Compound 6			
C22	-S1	-C23	99.84(8)	C16	-C15	-C33	109.09(12)
C26	-s2	-C27	98.32(9)	C16	-C15	-C36	107.94(13)
C30	-S3	-C31	97.50(8)	C14	-C15	-C36	110.46(13)
C34	-S4	-C35	97.08(8)	C33	-C15	-C36	109.11(13)
C1	-N1	-C4	$110 \ 43(13)$	N4	-C16	-C17	106 52(14)
CG	-N2	-09	110.19(13) 110.89(13)	N A	-C16	-015	$122 \ 17(13)$
C11	_N3	-C14	110.05(13) 110.45(12)	C15	-C16	-C17	$131 \ 25(14)$
	-IN J	-C14 C10	110.43(12) 111.15(12)	C15	-C10	-C17	107 04(15)
VI1	-IN4 01	-019	111.13(13) 106.79(13)	C10 C17	-C17	-C10	107.94(13) 107.76(15)
C 2	-01	-02	100.70(13)	C17 C19	-C10	-019	107.70(13)
UZ NI1	-C1	-020	131.14(14) 132.00(12)		-019	-020	131.40(13)
	-01	-020	122.00(13)	N4	-019	-010	100.03(14)
	-02	-03	107.96(14)	N4	-019	-020	121.89(14)
CZ	-03	-04	107.67(14)	CI	-020	-021	109.41(12)
NI	-C4	-03	107.15(14)	CI	-020	-024	111.33(13)
C3	-C4	-C5	131.11(15)	C19	-C20	-C21	108.62(13)
NI	-C4	-C5	121.29(14)	C19	-C20	-C24	108.69(12)
C4	-C5	-C6	107.89(13)	C21	-C20	-C24	108.80(13)
C4	-C5	-C28	110.15(13)	C1	-C20	-C19	109.93(13)
C6	-C5	-C25	108.38(13)	C20	-C21	-C22	114.96(13)
С4	-C5	-C25	112.03(13)	S1	-C22	-C21	113.55(13)
C25	-C5	-C28	109.66(14)	S1	-C23	-C24	113.28(13)
C6	-C5	-C28	108.64(13)	C20	-C24	-C23	113.64(14)
N2	-C6	-C7	106.54(14)	C5	-C25	-C26	114.46(15)
С5	-C6	-C7	133.14(15)	S2	-C26	-C25	113.42(14)
N2	-C6	-C5	120.30(14)	S2	-C27	-C28	112.87(13)
C6	-C7	-C8	107.98(16)	C5	-C28	-C27	115.23(15)
С7	-C8	-C9	107.88(16)	C10	-C29	-C30	115.34(14)
N2	-C9	-C10	119.67(14)	S3	-C30	-C29	113.07(12)
C8	-C9	-C10	133.58(15)	S3	-C31	-C32	112.50(12)
N2	-C9	-C8	106.71(14)	C10	-C32	-C31	113.94(14)
С9	-C10	-C11	107.81(12)	C15	-C33	-C34	113.28(14)
С9	-C10	-C32	109.05(13)	S4	-C34	-C33	112.35(13)
C11	-C10	-C29	111.01(13)	S4	-C35	-C36	113.57(13)
С9	-C10	-C29	107.35(13)	C15	-C36	-C35	114.84(14)
C11	-C10	-C32	111.54(13)				
C29	-C10	-C32	109.95(13)	040	-C42	-C41	121.3(3)
NЗ	-C11	-C10	121.70(14)	040	-C42	-C431	122.5(3)
NЗ	-C11	-C12	106.82(13)	C41	-C42	-C431	116.2(2)
C10	-C11	-C12	131,21(15)	040	-C44	-C45	123.0(18)
C11	-C12	-C13	108.32(14)	040	-C44	-C432	145(2)
C12	-C13	-C14	107.75(14)	C45	-C44	-C432	91.9(16)
N3	-C14	-C15	122.81(13)				
C13	-C14	-C15	130.48(14)	C.5.2	-C.51	-C53	117.6(2)
N3	-C14	-013	106 65(13)	050	-051	-052	122 55(17)
C14	-015	-016	109.87(12)	050	-051	-053	119 8(2)
C14	-015	-033	100.07(12) 110.32(13)	000	001	699	119.0(2)
011	010	000	110.02(10)				
C4	-N1	-H1	124.5(14)	Н281	-C28	-H282	106.0(16)
C1	-N1	-H1	1246(14)	C10	-C29	-H291	1065(11)
C6	-N2	-H2	126 1(14)	C10	-C29	-H292	1105(10)
C Q	-N2	_H2	120.1(14) 122.9(14)	C30	-C29	_H292	1088(11)
C14	-N3	_H3	125.5(12)	C30	-C29	_H291	100.0(11) 108.3(11)
C11	-M3	-n3 112	123.3(12) 124.1(12)	U2Q1	-C29	02	100.0(11) 107.1(15)
	-NJ	-115	124.1(12) 124.8(13)	C3	-029	-112.92	107.1(13) 107.5(11)
C16	- N 4	-114	124.0(13)	50	-030	-11301	107.5(11) 105.5(12)
C10	-02	-114 _U21	124.0(13) 125.0(11)	C 2 0	-030	-11302	103.3(12) 111.2(12)
C1 C2	-02		125.0(11) 126.1(11)	C29	-030	-11201	111.2(12) 110.7(11)
C3 C3	-02		120.1(11)	U201	-030	-прод	110.7(11)
	-63	-HJL	120.0(12)	HJUL	-630	-HJUZ	104 0(13)
C4 C6	-63	-HJL	120.4(12)	53	-U31	-HJLL	100 7(11)
			124.9(12)	53	-U31	-HJIZ	$\perp \cup \Diamond \cdot / (\perp \perp)$
07	-07	-H/L	$\perp \angle / \cdot \perp (\perp \angle)$	C32	-C31	-HJII	$\pm \pm 0.0(\pm 3)$
	-08	-H&T	$\perp \angle /.4(\perp \exists)$	C32	-031	-нзі2	
C.9	-08	-H81	124./(13)	H311	-031	-нз12	109.5(17)
CII	-C12	-H121	126.3(12)	C10	-032	-H321	10/.3(11)
CT3	-C12	-HIZI	125.4(12)	C10	-032	-H322	IU8.9(II)

Table	S6	(cont.) -	Bond Angles	(Degrees)	for	Compo	und 6		
C12	-C1	3 -н131	125.3(11)		C31	-0.32	-H321	109.0(11)
C14	-C1	з <u>–</u> н131	126 9(11)		C31	-C32	-H322	109 8(11)
C16	-C1	7 –H171	125 9(12)		н321	-032	-H322	107.7(15)
C18	-C1	7 –H171	126 2(12)		C15	-033	-H331	109.7(10)
C17	-C1	я <u>–</u> н181	120.2(12)		C15	-033	-H332	110 7(10)
C19	-01	о птот 8 _н181	12/.3(13)		C31	-033	_H331	100.7(10) 108.7(10)
C20	-02	1 <u>-</u> H211	107 2(11)		C31	-033	-4332	100.7(10)
C20	-C2	т патт 1 – ч212	109 3(10)		цзз1	-033	_H332	104.2(14)
C20	-C2	т пата 1 – ч211	109.3(10)		GN GN	-034	_H3/1	104.2(14) 105.5(11)
C22	-C2	1 <u>–</u> H212	110 1 (11)		54 54	-034	_H342	109.5(11) 109.5(11)
U22 H211	-C2	1 <u>–</u> H212	105 1(15)		C 3 3	-034	_H341	109.5(11) 109.5(11)
S1	-C2	и пата 2 – н221	109 6(11)		C33	-034	-H342	100.0(11) 110.2(11)
S1	-C2	2 <u>-</u> H222	103.6(13)		нзд1	-034	-H342	109 7(16)
C21	-C2	2 <u>н</u> 222	110 8(11)		94 94	-C35	-H351	109.7(10) 108.8(12)
C21	-C2	2 <u>-</u> H222	111 1 (13)		54 54	-035	-H352	100.0(12) 104.3(13)
н221	-C2	2 <u>-</u> H222	107 7(17))		C36	-035	-H351	104.0(10) 110.1(11)
S1	-C2	з <u>–</u> н231	1045(12))		C36	-035	-H352	111 0(13)
S1	-C2	3 –H232	107.4(11)		н351	-035	-H352	1089(17)
C24	-C2	з <u>–</u> н231	110 3(12)		C15	-036	-H361	100.5(17) 107.6(10)
C24	-C2	3 <u>-</u> H232	111 2(11)		C15	-036	-H362	109 4(11)
U24 H231	-C2	з <u>–</u> н232	109 9(16)		C 3 5	-036	-H361	109.9(11)
C20	-C2	а <u>–</u> н241	108.8(10)		C35	-036	-H362	109.0(10) 108.1(11)
C20	-C2	4 <u>-</u> H242	108 6(10)		UJJ Н361	-C36	-H362	106.8(16)
C23	-C2	4 <u>-</u> H241	110 3(11)		11301	000	11502	100.0(10)
C23	-C2	4 <u>-</u> H242	107 8(10)		C42	-C41	-н411	109 43
U2J	-C2	ч <u>11242</u> Л <u>-</u> H2Л2	107.0(10)		C42	-041	_H/12	109.45
C5	-C2	5 <u>-</u> H251	107.3(13) 105.7(11))		C42	-C41	_H413	109.40
C5	-C2	5 <u>-</u> H252	109.7(11)		нд11	-C41	_H412	109.44
C26	-C2	5 <u>–</u> H251	109.9(11)		нд11	-C41	_H413	109.45
C26	-C2	5 -H252	109.0(11)		н412	-C41	_H413	109.30
H251	-C2	5 -H252	107 9(15)		C44	-045	-H451	109.40
92	-C2	6 <u>-</u> H261	109 7(12)		C44	-045	-H452	109.10
S2	-C2	6 -H262	106 4(12)		C44	-C45	-H453	109.02
C25	-C2	6 -H261	110 5(13)		н451	-C45	-H452	109.10
C25	-C2	6 -H262	110.1(12)		н451	-C45	-H453	109.33
H261	-C2	6 -H262	106 4(17)		H452	-C45	-H453	109 36
S2	-C2	7 -H271	108.5(12))		C42	-C431	-H431	109 53
s2	-C2	7 -H272	104 4(13)		C42	-C431	-H432	109 45
C28	-C2	7 -H271	111.7(12)		C42	-C431	-H433	109.49
C28	-C2	7 -H272	111.1(13)		н431	-C431	-H432	109.47
H271	-C2	7 -H272	108.0(17)		Н431	-C431	-H433	109.43
C5	-C2	8 -H281	109.8(12)		Н432	-C431	-H433	109.47
C5	-C2	8 -H282	107.1(11)		C44	-C432	-H435	109.54
C27	-C2	8 -H281	109.1(11)		C44	-C432	-H436	109.55
C27	-C2	8 -H282	109.2(11)		H434	-C432	-H435	109.41
-	-			,		-			
H434	-C4	32 -H436	109.38						
11435	C-1	52 11450	109.30						
C51	-C5	2 - Н523	109.46						
C51	-C5	2 -H521	109.49						
C51	-C5	2 - Н522	109.47						
H522	-C5	2 -н523	109.50						
H521	-C5	2 -н522	109.42						
H521	-C5	2 -н523	109.48						
C51	-C5	3 -н531	109.47						
C51	-C5	3 -н532	109.46						
C51	-C5	3 -н533	109.41						
H531	-C5	3 -н533	109.55						
H532	-C5	3 -н533	109.46						
H531	-C5	3 -н532	109.48						

Spectra of the new compounds prepared

1H NMR

13 carbon spectrum (DMSO)

Electro spray MS

