Supplementary material Ghazzali et al.

Table S1 Bond lengths for 1-3

	1	2	3
S1A-C5A	1.7099(16)	1.713(2)	1.714(7)
S1A-C2A	1.7183(13)	1.725(2)	1.738(7)
N1A-C1A	1.2840(18)	1.283(3)	1.295(9)
N1A-N1A ⁱ , N1A-N1B	1.406(2)	1.403(2)	1.410(8)
C1A-C2A	1.4451(18)	1.404(3)	1.416(9)
C2A-C3A	1.3758(19)	1.374(3)	1.363(9)
C3A-C4A	1.421(2)	1.418(3)	1.418(9)
C4A-C5A	1.353(2)	1.359(3)	1.342(9)
S1B-C5B	1.7039(15)	1.707(2)	1.721(7)
S1B-C2B	1.7288(14)	1.7240(19)	1.719(7)
N1B-C1B	1.2882(18)	1.286(3)	1.304(9)
N1B-N1B ⁱⁱ	1.398(2)		
C1B-C2B	1.4450(19)	1.445(3)	1.449(10)
C2B-C3B	1.370(2)	1.372(3)	1.358(9)
C3B-C4B	1.418(2)	1.417(3)	1.407(10)
C4B-C5B	1.371(2)	1.358(3)	1.348(9)
C4A-C5A	1.353(2)	1.359(3)	1.342(9)
BrA-CA		1.882(2)	1.871(7)
BrB-CB		1.8884(19)	1.871(7)
Symmetry transformations used to generate equivalent atoms: (i) -x,-y,-z (ii) -x,-y,-z+1 for 1.			

<u>1:</u>			
C5A-S1A-C2A	91.59(7)	C5B-S1B-C2B	91.87(7)
C1A-N1A-N1A ⁱ	111.73(13)	C1B-N1B-N1B ⁱⁱ	111.77(14)
N1A-C1A-C2A	121.25(12)	N1B-C1B-C2B	120.30(13)
C3A-C2A-C1A	126.42(13)	C3B-C2B-C1B	126.94(13)
C3A-C2A-S1A	111.20(10)	C3B-C2B-S1B	111.20(12)
C1A-C2A-S1A	122.33(10)	C1B-C2B-S1B	121.83(10)
C2A-C3A-C4A	112.42(14)	C2B-C3B-C4B	112.44(15)
C5A-C4A-C3A	112.24(13)	C5B-C4B-C3B	112.56(14)
C4A-C5A-S1A	112.55(11)	C4B-C5B-S1B	111.92(12)
Symmetry transformations	used to generate eq	uivalent atoms: (i) -x,-y,-z (ii) -	-x,-y,-z+1
<u>2:</u>			
C5A-S1A-C2A	92.16(11)	C5B-S1B-C2B	91.96(9)
C1A-N1A-N1B	111.23(16)	C1B-N1B-N1A	112.40(16)
N1A-C1A-C2A	122.12(18)	N1B-C1B-C2B	119.87(17)
C3A-C2A-C1A	125.92(19)	C3B-C2B-C1B	127.48(17)
C3A-C2A-S1A	111.22(15)	C3B-C2B-S1B	111.63(14)
C1A-C2A-S1A	122.80(16)	C1B-C2B-S1B	120.87(14)
C2A-C3A-C4A	111.7(2)	C2B-C3B-C4B	111.24(17)
C5A-C4A-C3A	113.88(19)	C5B-C4B-C3B	114.00(17)
C5A-C4A-BrA	123.77(16)	C5B-C4B-BrB	121.86(15)
C3A-C4A-BrA	122.30(17)	C3B-C4B-BrB	124.12(14)
C4A-C5A-S1A	111.00(16)	C4B-C5B-S1B	111.17(14)

Table S2: Bond angles for 1-3

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007

<u>3:</u>			
C5A-S1A-C2A	90.7(3)	C1B-N1B-N1A	110.9(6)
C1A-N1A-N1B	112.0(6)	N1B-C1B-C2B	120.9(7)
N1A-C1A-C2A	122.2(6)	C3B-C2B-C1B	126.8(7)
C3A-C2A-C1A	127.9(6)	C3B-C2B-S1B	111.5(5)
C3A-C2A-S1A	110.8(5)	C1B-C2B-S1B	121.6(5)
C1A-C2A-S1A	121.3(5)	C2B-C3B-C4B	113.3(6)
C2A-C3A-C4A	113.3(6)	C5B-C4B-C3B	111.8(6)
C5A-C4A-C3A	111.8(6)	C4B-C5B-S1B	112.8(5)
C4A-C5A-S1A	113.4(5)	C4B-C5B-BrB	127.6(5)
C4A-C5A-BrA	127.3(5)	S1B-C5B-BrB	119.6(4)

Figure S1. Plot of the van der Waals surfaces of the "walls" of the apparent "channels" in **3** showing that there are no voids in this structure.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007

Figure S2. HOMO orbitals for thiophene $\overline{1}$, and the fluoro $3\mathbf{b}$, chloro $3\mathbf{c}$ and bromo 3 derivatives showing the increased contribution by the halogen orbitals. (Molecular orbital coefficients for the halogens also increase from 0.21 in $3\mathbf{b}$ to 0.29 in 3.)

Table S3

Cartesian coordinates (ångströms) for the DFT optimized structures of 1-3.

1

H1	1	1.3689528	-0.0094988	-6.2016137
H2	2	-1.2821677	-0.0286679	-6.0372498
C1	3	-0.7262203	-0.0034455	1.5314270
C2	4	0.7262203	0.0034455	-1.5314270
H3	5	-1.7859275	-0.0187738	1.2053769
S 1	6	1.1667163	0.0193158	3.5826384
C3	7	-0.4600085	0.0035565	2.9433268
C4	8	0.4600085	-0.0035565	-2.9433268
H4	9	-2.4788832	-0.0109785	3.7881921
S2	10	-1.1667163	-0.0193158	-3.5826384
C5	11	-1.3976955	-0.0003530	3.9736716
C6	12	1.3976955	0.0003530	-3.9736716
H5	13	1.7859275	0.0187738	-1.2053769
H6	14	1.2821677	0.0286679	6.0372498
C7	15	-0.8058677	0.0093953	5.2614151
C8	16	0.8058677	-0.0093953	-5.2614151
H7	17	2.4788832	0.0109785	-3.7881921
N1	18	-0.2322547	-0.0057246	-0.6494692
C9	19	0.5760038	0.0199321	5.2009417
C10	20	-0.5760038	-0.0199321	-5.2009417
N2	21	0.2322547	0.0057246	0.6494692
H8	22	-1.3689528	0.0094988	6.2016137

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007

Br1 1	-5.3980477	0.3874643	4.5356718
Br2 2	5.4664044	-0.1467878	-4.5475454
C1 3	-1.2623677	0.2443905	1.0169937
C2 4	1.3417862	-0.5119526	-0.9993320
C3 5	-2.1716622	-0.2519438	2.0083846
C4 6	2.2049978	0.0674760	-1.9896519
C5 7	-3.1625267	0.4833732	2.6414854
C6 8	3.2844637	-0.5306808	-2.6212847
C7 9	-3.9238237	-0.3066361	3.5312448
C8 10	3.9255186	0.3483575	-3.5243652
C9 11	-3.5192656	-1.6203137	3.5911922
C10 1	2 3.3492402	1.5959444	-3.5867776
H1 13	3 -1.3573501	1.3010662	0.7342425
H2 14	1.5241160	-1.5497748	-0.6906816
H3 15	5 -3.3239719	1.5408297	2.4589023
H4 10	5 3.5898683	-1.5556914	-2.4362628
H5 11	-3.9420439	-2.4224883	4.1867325
H6 18	3.6503052	2.4372811	-4.2015756
N1 19	-0.3617554	-0.5088576	0.4575802
N2 20	0.3774343	0.1871523	-0.4796119
S1 21	-2.1865528	-1.9154667	2.5385534
S2 22	1.9967535	1.7182812	-2.5268778
H1 1	2.4422166	-0.0095120	-5.8627400
Br1 2	-0.5658357	-0.0058339	-6.8340515
C1 3	-1.0182963	-0.0033496	1.3572786
C2 4	1.0182963	0.0033496	-1.3572786
H2 5	-1.9974149	-0.0043185	0.8384385
S1 6	0.5020337	-0.0038779	3.6792121
C3 7	-1.0076956	-0.0030581	2.7907509
C4 8	1.0076956	0.0030581	-2.7907509
H3 9	-3.1368821	0.0030003	3.2949983
S2 10	-0.5020337	0.0038779	-3.6792121
C5 11	-2.1003199	0.0013828	3.6544413
C6 12	2 2.1003199	-0.0013828	-3.6544413
H4 13	3 1.9974149	0.0043185	-0.8384385
Br2 14	4 0.5658357	0.0058339	6.8340515
C7 15	5 -1.7388011	0.0044021	5.0236273
C8 16	5 1.7388011	-0.0044021	-5.0236273
H5 11	3.1368821	-0.0030003	-3.2949983
N1 18	-0.0959827	0.0004085	-0.6801662
C9 19	-0.3669776	0.0023816	5.1790401
C10 2	0 0.3669776	-0.0023816	-5.1790401

0.0959827

-2.4422166

-0.0004085

0.0095120

0.6801662

5.8627400

N2 21

H6 22

2

3