Supporting Information

Alkenyl-functionalized NHC Iridiumbased catalysts for hydrosilylation.

Alessandro Zanardi, Eduardo Peris, Jose A. Mata*

Departament Química Inorgànica i Orgànica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, E-12071, Castelló, Spain.

Fax: 34 964728214. Tel: 34 964728243. E-mail: jmata@qio.uji.es

Summary: A family of alkene-functionalized N-heterocyclic carbene iridium complexes has been synthesized, providing a series of monocoordinated, bischelate and *pincer* mixed alkenyl-NHC species. The coordination of the olefin is highly influenced by the nature of the substituents on the NHC ring, and on the length of the alkenyl branch. A fluxional process involving the coordination/decoordination of the olefin in the bis-allyl-NHC complexes has been studied, and the activation parameters have been determined by means of VT-NMR-spectroscopy. The monocoordinated complexes are highly active in the hydrosilylation of terminal alkynes, showing high selectivity on the Z-isomers, with no alpha isomers or dehydrogenative silylation processes observed.

1.- General Procedures.

- 2.- Catalytic studies.
- 3.- Crystallographic data.
 - 3.1 Experimental crystallographic data collection for compound 2a.
 - 3.2 Experimental crystallographic data collection for compound 2bPF₆.
 - **3.3 Experimental crystallographic data collection for compound 3.**
- 4.- NMR characterization of complex 1a.
- 5.- Variable-Temperature NMR Studies.
 - 5.1 Kinetic constant at the coalescence temperature for complex 1a.
 - 5.2 Line shape analysis data for complex 1a signal at 6.9 ppm.
 - 5.3 Line shape analysis data for complex 1a signal at 6.7 ppm.
- 6.- Ligand precursors

1.- General Procedures.

Syntheses and catalytic experiments were carried out under aerobic conditions and without solvent pretreatment. Reagents and solvents (reagent grade) commercially available were used as received unless otherwise stated. NMR spectra were recorded on Variant spectrometers operating at 300 or 500 MHz (¹H NMR) and 75 and 125 MHz (¹³C NMR), respectively, and referenced to SiMe₄ (δ in ppm and J in Hertz). NMR spectra were recorded at room temperature with CDCl₃ unless for the VT-NMR analyses. Assignments are based on ¹H, ¹³C, APT and COSY experiments. A QTOF I (quadrupole-hexapole-TOF) mass spectrometer with an orthogonal Z-spray-electrospray interface (Micromass, Manchester, UK) was used. The drying gas as well as nebulizing gas was nitrogen at a flow of 400L/h and 80 L/h respectively. The temperature of the source block was set to 120 °C and the desolvation temperature to 150°C. A capillary voltage of 3.5 KV was used in the positive scan mode and the cone voltage was set to 30V. Mass calibration was performed using a solution of sodium iodide in isopropanol:water (50:50) from m/z 150 to 1000 a.m.u. Sample solutions (aprox 1×10^{-4} M) in dichlormethane:methanol (50:50) were infused via syringe pump directly connected to the interface at a flow of 10 µl/min. A 1 µg/mL solution of 3,5-diiodo-L-tyrosine was used as lock mass. Elemental analyses were carried out in a Euro EA 3000 Eurovector Analyser.

2.- Catalytic studies.

Hydrosilylation reactions were carried out in Schlenk tubes under aerobic conditions. In a typical experiment, alkyne (1 Eq.), dimethylphenylsilane (1 Eq.), catalyst (1 mol %), ferrocene (0.1 Eq.; Internal reference) and 10 ml of CHCl₃, were stirred at room temperature or 60 °C for 24 h. Conversion and isomer distribution was monitored by ¹H NMR. Several aliquots of 0.5 mL were taken at the desired sampling time.

Entry	Catalyst ^a	Substrate	$\operatorname{Conv}(\%)^{\mathrm{b}}$	α	Е	Ζ
1	1b	1-Hexyne	21			100
2	1a	1-Hexyne	68		7	93
3	1c	1-Hexyne	25			100
4	3	1-Hexyne	71		12	88
5	4	1-Hexyne	46		9	91
6	5	1-Hexyne	55		17	83
7	1b	Phenylacetylene	57		34	66
8 ^c	1a	Phenylacetylene	92		28	72
9	1c	Phenylacetylene	45		20	80
10	3	Phenylacetylene	18		7	93
11	4	Phenylacetylene	0			
12 ^c	5	Phenylacetylene	80		20	80

Table 1 Hydrosilylation of alkynes at room temperature (hydrosilane = HSiMe₂Ph).

Aerobic conditions, Temp 25 °C, Time 1 h, Solvent CHCl₃. ^aCatalyst loading (1 mol%); ^bYields determined by ¹H NMR. ^cCatalyst active at least for three runs.

Entry	Catalyst ^a	Time (h)	$\operatorname{Conv}(\%)^{\mathrm{b}}$	α	Е	Z
1	1b	1	70		10	90
2	1 a	1	100		23	77
3	1c	1	67		12	88
4	3	1	36		21	79
5	4	1	55		26	74
6	5	1	100		27	73
7	1b	2	100		23	76
8	1 a	2	100		17	83
9	1c	2	100		20	80
10	3	2	100		20	80
11	4	2	100		31	69
12	5	2	100		35	65
13	1a ^c	2	85		30	70
14	1a ^d	2	45 ^e		35	65

Table 2 Hydrosilylation of phenylacetylene at 60°C (hydrosilane = HSiMe₂Ph).

Aerobic conditions, Temp 60 °C, Solvent CHCl₃. ^aCatalyst loading (1 mol%) unless otherwise stated; ^bYields determined by ¹H NMR. ^cCatalyst loading (0.1 mol%). ^dCatalyst loading (0.01 mol%). ^eFull conversion was achieved after 24h.

3.- Crystallographic data

A single crystal was mounted on a glass fiber in a random orientation. Data collection was performed at room temperature on a Siemens Smart CCD diffractometer using graphite monocromated Mo-K α radiation (λ =0.71073 A) with a nominal crystal to detector distance of 4.0 cm. An hemisphere of data was collected based on three w-scans runs (starting ω =-28°) at values ϕ =0, 90 and 180 with the detector at 2 θ = 28° At each of these runs, frames (606, 435 and 230 respectively) were collected at 0.3° intervals and 40 s per frame.

The diffraction frames were integrated using the SAINT package and corrected for absorption with SADABS.(1) The raw intensity data were converted (including corrections for Lorentz and polarization effects) to structure amplitudes and their esd's using the SAINT program (2).

(1) Sheldrick, G.M. SHELXTL, version 5.1, Bruker AXS, Inc., Madison, WI, 1997. 24.

(2) a) SAINT version 5.0 Bruker Analytical X-ray Systems, Madison, WI, 1998. b) Sheldrick,G. M. SADABS Empirical absorption program, University of Göttingen, Göttingen,Germany, 1996.

3.1.- Experimental crystallographic data collection for compound 2a.

Figure 1. ORTEP diagram of complex 2a showing 50% probability ellipsoids. Hydrogen atoms and the counterion (BF_4^-) have been omitted for clarity.

for 2a	
str861m	
C17 H24 B F4 Ir N2	
535.39	
293(2) K	
0.71073 Å	
Monoclinic	
P2(1)/c	
a = 8.1277(4) Å	$\alpha = 90^{\circ}$.
b = 36.568(2) Å	β=
c = 12.0502(6) Å	$\gamma = 90^{\circ}$.
3532.0(3) Å ³	
8	
2.014 Mg/m ³	
	for 2a str861m C17 H24 B F4 Ir N2 535.39 293(2) K 0.71073 Å Monoclinic P2(1)/c a = 8.1277(4) Å b = 36.568(2) Å c = 12.0502(6) Å 3532.0(3) Å ³ 8 2.014 Mg/m ³

7.602 mm ⁻¹
2064
0.19 x 0.12 x 0.10 mm ³
1.11 to 27.50°.
-10<=h<=10, -47<=k<=44, -12<=l<=15
24448
8122 [R(int) = 0.0742]
99.9 %
Bruker SADABS
Full-matrix least-squares on F ²
8122 / 0 / 451
1.047
R1 = 0.0448, wR2 = 0.0778
R1 = 0.0953, wR2 = 0.0942
1.281 and -1.175 e.Å ⁻³

Table 4. Bond lengths [Å] and angles [°] for 2a.

Ir(1)-C(1)	1.934(9)	C(2)-C(3)	1.374(13)
Ir(1)-C(5)	2.214(8)	C(4)-C(5)	1.531(12)
Ir(1)-C(6)	2.225(9)	C(5)-C(6)	1.404(12)
Ir(1)-C(15)	2.230(8)	C(7)-C(8)	1.511(13)
Ir(1)-C(9)	2.261(9)	C(8)-C(9)	1.373(13)
Ir(1)-C(14)	2.266(8)	C(10)-C(11)	1.368(12)
Ir(1)-C(11)	2.270(9)	C(10)-C(17)	1.519(13)
Ir(1)-C(10)	2.289(8)	C(11)-C(12)	1.481(12)
Ir(1)-C(8)	2.308(8)	C(12)-C(13)	1.567(13)
C(1)-N(2)	1.318(10)	C(13)-C(14)	1.505(12)
C(1)-N(1)	1.358(11)	C(14)-C(15)	1.386(11)
F(1)-B(1)	1.380(12)	C(15)-C(16)	1.496(12)
B(1)-F(2)	1.350(12)	C(16)-C(17)	1.545(13)
B(1)-F(3)	1.374(12)	Ir(31)-C(31)	1.936(9)
B(1)-F(4)	1.381(13)	Ir(31)-C(36)	2.179(9)
N(1)-C(2)	1.385(11)	Ir(31)-C(35)	2.185(9)
N(1)-C(4)	1.470(10)	Ir(31)-C(44)	2.239(8)
N(2)-C(3)	1.383(11)	Ir(31)-C(45)	2.274(8)
N(2)-C(7)	1.481(11)	Ir(31)-C(39)	2.279(9)

Ir(31)-C(40)	2.284(9)	C(6)-Ir(1)- $C(14)$	160.0(3)
Ir(31)-C(41)	2.294(8)	C(15)-Ir(1)-C(14)	35.9(3)
Ir(31)-C(38)	2.309(10)	C(9)-Ir(1)-C(14)	114.7(4)
N(31)-C(31)	1.341(11)	C(1)-Ir(1)-C(11)	164.6(4)
N(31)-C(32)	1.392(11)	C(5)-Ir(1)-C(11)	118.2(3)
N(31)-C(34)	1.444(11)	C(6)-Ir(1)-C(11)	104.7(3)
C(31)-N(32)	1.333(11)	C(15)-Ir(1)-C(11)	92.5(3)
F(31)-B(31)	1.376(12)	C(9)-Ir(1)-C(11)	85.6(4)
B(31)-F(34)	1.330(14)	C(14)-Ir(1)-C(11)	78.2(3)
B(31)-F(33)	1.360(12)	C(1)-Ir(1)-C(10)	160.0(3)
B(31)-F(32)	1.370(13)	C(5)-Ir(1)-C(10)	85.9(3)
N(32)-C(33)	1.378(11)	C(6)-Ir(1)-C(10)	86.6(4)
N(32)-C(37)	1.458(11)	C(15)-Ir(1)-C(10)	78.3(3)
C(32)-C(33)	1.345(13)	C(9)-Ir(1)-C(10)	113.9(4)
C(34)-C(35)	1.544(14)	C(14)-Ir(1)-C(10)	85.0(3)
C(35)-C(36)	1.389(14)	C(11)-Ir(1)-C(10)	34.9(3)
C(37)-C(38)	1.523(14)	C(1)-Ir(1)-C(8)	73.9(4)
C(38)-C(39)	1.352(15)	C(5)-Ir(1)-C(8)	142.5(3)
C(40)-C(41)	1.384(13)	C(6)-Ir(1)-C(8)	117.2(4)
C(40)-C(47)	1.508(14)	C(15)-Ir(1)-C(8)	114.9(4)
C(41)-C(42)	1.506(13)	C(9)-Ir(1)-C(8)	35.0(3)
C(42)-C(43)	1.520(13)	C(14)-Ir(1)-C(8)	82.3(3)
C(43)-C(44)	1.503(12)	C(11)-Ir(1)-C(8)	91.1(4)
C(44)-C(45)	1.391(13)	C(10)-Ir(1)-C(8)	126.0(3)
C(45)-C(46)	1.510(12)	N(2)-C(1)-N(1)	106.7(8)
C(46)-C(47)	1.507(14)	N(2)-C(1)-Ir(1)	128.9(7)
C(1)-Ir(1)-C(5)	76.8(3)	N(1)-C(1)-Ir(1)	123.9(7)
C(1)-Ir(1)-C(6)	85.4(4)	F(2)-B(1)-F(3)	110.8(9)
C(5)-Ir(1)-C(6)	36.9(3)	F(2)-B(1)-F(1)	111.7(9)
C(1)-Ir(1)-C(15)	91.2(4)	F(3)-B(1)-F(1)	109.0(9)
C(5)-Ir(1)-C(15)	88.3(3)	F(2)-B(1)-F(4)	110.0(9)
C(6)-Ir(1)-C(15)	124.3(4)	F(3)-B(1)-F(4)	108.4(9)
C(1)-Ir(1)-C(9)	83.7(4)	F(1)-B(1)-F(4)	106.8(9)
C(5)-Ir(1)-C(9)	119.3(4)	C(1)-N(1)-C(2)	110.3(7)
C(6)-Ir(1)-C(9)	85.3(4)	C(1)-N(1)-C(4)	116.3(7)
C(15)-Ir(1)-C(9)	149.5(4)	C(2)-N(1)-C(4)	133.3(8)
C(1)-Ir(1)-C(14)	96.4(3)	C(1)-N(2)-C(3)	110.6(7)
C(5)-Ir(1)-C(14)	124.1(3)	C(1)-N(2)-C(7)	114.1(7)

C(3)-N(2)-C(7)	135.3(8)	C(44)-Ir(31)- $C(45)$	35.9(3)
C(3)-C(2)-N(1)	105.4(8)	C(31)-Ir(31)-C(39)	82.8(4)
C(2)-C(3)-N(2)	107.0(8)	C(36)-Ir(31)-C(39)	86.6(5)
N(1)-C(4)-C(5)	107.7(7)	C(35)-Ir(31)-C(39)	120.9(4)
C(6)-C(5)-C(4)	121.1(8)	C(44)-Ir(31)-C(39)	145.7(4)
C(6)-C(5)-Ir(1)	72.0(5)	C(45)-Ir(31)-C(39)	110.8(4)
C(4)-C(5)-Ir(1)	110.6(6)	C(31)-Ir(31)-C(40)	164.8(4)
C(5)-C(6)-Ir(1)	71.2(5)	C(36)-Ir(31)-C(40)	103.7(4)
N(2)-C(7)-C(8)	109.2(7)	C(35)-Ir(31)-C(40)	117.6(4)
C(9)-C(8)-C(7)	122.2(9)	C(44)-Ir(31)-C(40)	92.7(4)
C(9)-C(8)-Ir(1)	70.7(6)	C(45)-Ir(31)-C(40)	78.7(3)
C(7)-C(8)-Ir(1)	109.1(6)	C(39)-Ir(31)-C(40)	84.5(4)
C(8)-C(9)-Ir(1)	74.4(5)	C(31)-Ir(31)-C(41)	159.9(4)
C(11)-C(10)-C(17)	124.8(9)	C(36)-Ir(31)-C(41)	87.9(4)
C(11)-C(10)-Ir(1)	71.8(5)	C(35)-Ir(31)-C(41)	86.1(4)
C(17)-C(10)-Ir(1)	111.7(6)	C(44)-Ir(31)-C(41)	77.3(3)
C(10)-C(11)-C(12)	126.0(9)	C(45)-Ir(31)-C(41)	84.5(3)
C(10)-C(11)-Ir(1)	73.3(5)	C(39)-Ir(31)-C(41)	115.0(4)
C(12)-C(11)-Ir(1)	110.8(6)	C(40)-Ir(31)-C(41)	35.2(3)
C(11)-C(12)-C(13)	113.0(7)	C(31)-Ir(31)-C(38)	73.0(4)
C(14)-C(13)-C(12)	114.6(7)	C(36)-Ir(31)-C(38)	117.2(5)
C(15)-C(14)-C(13)	124.2(8)	C(35)-Ir(31)-C(38)	142.3(4)
C(15)-C(14)-Ir(1)	70.6(5)	C(44)-Ir(31)-C(38)	112.1(4)
C(13)-C(14)-Ir(1)	112.9(6)	C(45)-Ir(31)-C(38)	79.6(4)
C(14)-C(15)-C(16)	125.8(9)	C(39)-Ir(31)-C(38)	34.3(4)
C(14)-C(15)-Ir(1)	73.5(5)	C(40)-Ir(31)-C(38)	91.9(4)
C(16)-C(15)-Ir(1)	111.7(6)	C(41)-Ir(31)-C(38)	126.9(4)
C(15)-C(16)-C(17)	112.8(8)	C(31)-N(31)-C(32)	109.1(8)
C(10)-C(17)-C(16)	114.9(8)	C(31)-N(31)-C(34)	115.8(8)
C(31)-Ir(31)-C(36)	83.7(4)	C(32)-N(31)-C(34)	135.0(8)
C(31)-Ir(31)-C(35)	76.3(4)	N(32)-C(31)-N(31)	106.9(8)
C(36)-Ir(31)-C(35)	37.1(4)	N(32)-C(31)-Ir(31)	127.9(7)
C(31)-Ir(31)-C(44)	93.2(4)	N(31)-C(31)-Ir(31)	124.5(7)
C(36)-Ir(31)-C(44)	127.0(4)	F(34)-B(31)-F(33)	111.5(10)
C(35)-Ir(31)-C(44)	90.7(4)	F(34)-B(31)-F(32)	113.8(11)
C(31)-Ir(31)-C(45)	98.2(4)	F(33)-B(31)-F(32)	110.4(10)
C(36)-Ir(31)-C(45)	162.6(4)	F(34)-B(31)-F(31)	107.1(10)
C(35)-Ir(31)-C(45)	126.5(4)	F(33)-B(31)-F(31)	108.9(10)

F(32)-B(31)-F(31)	104.7(10)	C(41)-C(40)-C(47)	123.2(9)
C(31)-N(32)-C(33)	110.4(8)	C(41)-C(40)-Ir(31)	72.8(5)
C(31)-N(32)-C(37)	116.4(7)	C(47)-C(40)-Ir(31)	107.9(6)
C(33)-N(32)-C(37)	133.2(8)	C(40)-C(41)-C(42)	126.3(9)
C(33)-C(32)-N(31)	107.1(8)	C(40)-C(41)-Ir(31)	72.0(5)
C(32)-C(33)-N(32)	106.6(8)	C(42)-C(41)-Ir(31)	112.4(6)
N(31)-C(34)-C(35)	107.4(8)	C(41)-C(42)-C(43)	114.8(8)
C(36)-C(35)-C(34)	119.1(10)	C(44)-C(43)-C(42)	112.7(8)
C(36)-C(35)-Ir(31)	71.2(6)	C(45)-C(44)-C(43)	126.6(9)
C(34)-C(35)-Ir(31)	110.6(6)	C(45)-C(44)-Ir(31)	73.4(5)
C(35)-C(36)-Ir(31)	71.7(6)	C(43)-C(44)-Ir(31)	111.3(6)
N(32)-C(37)-C(38)	106.0(8)	C(44)-C(45)-C(46)	123.8(9)
C(39)-C(38)-C(37)	123.0(10)	C(44)-C(45)-Ir(31)	70.7(5)
C(39)-C(38)-Ir(31)	71.6(6)	C(46)-C(45)-Ir(31)	112.1(6)
C(37)-C(38)-Ir(31)	110.9(6)	C(47)-C(46)-C(45)	114.8(7)
C(38)-C(39)-Ir(31)	74.1(6)	C(46)-C(47)-C(40)	115.6(8)

3.2.- Experimental crystallographic data collection for compound 2bPF₆.

Figure 2. ORTEP diagram of complex $2bPF_6$ showing 50% probability ellipsoids. Hydrogen atoms and the counterion (PF₆) have been omitted for clarity.

Identification code	str862mm			
Empirical formula	C17 H22 Cl2 F6 Ir N2 P			
Formula weight	662.44			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 15.2900(11) Å	α= 90°.		
	b = 10.7009(8) Å	β=96.789(2)°.		
	c = 12.7347(10) Å	$\gamma = 90^{\circ}$.		
Volume	2069.0(3) Å ³			
Ζ	4			
Density (calculated)	2.127 Mg/m ³			
Absorption coefficient	6.848 mm ⁻¹			
F(000)	1272			
Crystal size	0.12 x 0.11 x 0.08 mm ³			
Theta range for data collection	1.34 to 25.00°.			
Index ranges	-18<=h<=13, -12<=k<=12, -14<=l<=15			
Reflections collected 8374				
Independent reflections	3109 [R(int) = 0.0518]			
Completeness to theta = 25.00°	85.4 %			

Table 5.	Crystal	data	and	structure	refinement	for	2bPF ₆
----------	---------	------	-----	-----------	------------	-----	-------------------

Full-matrix least-squares on F ²
3109 / 36 / 262
1.117
R1 = 0.0525, wR2 = 0.1315
R1 = 0.0750, wR2 = 0.1743
2.075 and -2.127 e.Å ⁻³

Ir(1)-C(1)1.944(12) C(10)-C(11) 1.31(3) Ir(1)-C(15) 2.186(14) C(10)-C(17) 1.53(3) Ir(1)-C(9) 2.203(12) C(11)-C(12) 1.49(2) Ir(1)-C(5) 2.221(14) 1.50(3) C(12)-C(13) Ir(1)-C(8) 2.247(12) C(13)-C(14) 1.51(2)Ir(1)-C(6) 2.248(18) 1.29(2) C(14)-C(15) Ir(1)-C(11) 2.253(13) C(15)-C(16) 1.58(3) Ir(1)-C(14) 2.257(13) C(16)-C(17) 1.44(3)2.266(19) 91.9(5) Ir(1)-C(10) C(1)-Ir(1)-C(15) P(1)-F(5)1.472(19) C(1)-Ir(1)-C(9) 85.3(5) P(1)-F(3)1.522(14) C(15)-Ir(1)-C(9) 124.7(6) P(1)-F(1) 76.2(5) 1.537(18) C(1)-Ir(1)-C(5) P(1)-F(2)1.540(16) C(15)-Ir(1)-C(5) 115.6(5) P(1)-F(6) 1.559(13) C(9)-Ir(1)-C(5) 117.1(6) P(1)-F(4) 1.576(17) 75.4(5) C(1)-Ir(1)-C(8) C(15)-Ir(1)-C(8) Cl(1)-C(2)1.685(17) 89.2(6) N(1)-C(1) 1.320(18) C(9)-Ir(1)-C(8) 36.8(6) N(1)-C(2) 1.407(19) C(5)-Ir(1)-C(8) 142.6(5) N(1)-C(4) 1.454(18) C(1)-Ir(1)-C(6) 83.7(6) 1.336(16) 151.4(6) C(1)-N(2) C(15)-Ir(1)-C(6) Cl(2)-C(3) 1.694(13) C(9)-Ir(1)-C(6) 83.3(6) N(2)-C(3) 1.408(19) C(5)-Ir(1)-C(6) 35.9(5) N(2)-C(7) 1.44(2)C(8)-Ir(1)-C(6) 116.7(6) C(2)-C(3) 1.35(2) C(1)-Ir(1)-C(11) 166.0(5) C(4)-C(5)1.567(19) C(15)-Ir(1)-C(11) 91.2(5) 1.38(2) C(5)-C(6) C(9)-Ir(1)-C(11) 104.1(6) C(7)-C(8) 1.52(2) C(5)-Ir(1)-C(11) 90.2(5) C(8)-C(9) 1.41(2) C(8)-Ir(1)-C(11) 118.4(5)

Table 6. Bond lengths [Å] and angles [°] for 2b

C(6)-Ir(1)- $C(11)$	87.1(6)	N(2)-C(1)-Ir(1)	125.1(10)
C(1)-Ir(1)-C(14)	97.4(6)	C(1)-N(2)-C(3)	108.6(12)
C(15)-Ir(1)-C(14)	33.8(6)	C(1)-N(2)-C(7)	116.1(12)
C(9)-Ir(1)-C(14)	158.0(7)	C(3)-N(2)-C(7)	135.2(12)
C(5)-Ir(1)-C(14)	84.6(6)	C(3)-C(2)-N(1)	106.1(13)
C(8)-Ir(1)-C(14)	122.8(6)	C(3)-C(2)-Cl(1)	129.3(11)
C(6)-Ir(1)-C(14)	118.7(7)	N(1)-C(2)-Cl(1)	124.6(11)
C(11)-Ir(1)-C(14)	77.9(6)	C(2)-C(3)-N(2)	107.1(11)
C(1)-Ir(1)-C(10)	160.0(7)	C(2)-C(3)-Cl(2)	130.9(11)
C(15)-Ir(1)-C(10)	79.5(7)	N(2)-C(3)-Cl(2)	122.0(11)
C(9)-Ir(1)-C(10)	84.9(6)	N(1)-C(4)-C(5)	106.0(11)
C(5)-Ir(1)-C(10)	123.8(6)	C(6)-C(5)-C(4)	117.8(13)
C(8)-Ir(1)-C(10)	86.4(6)	C(6)-C(5)-Ir(1)	73.1(9)
C(6)-Ir(1)-C(10)	112.4(8)	C(4)-C(5)-Ir(1)	110.0(9)
C(11)-Ir(1)-C(10)	33.8(6)	C(5)-C(6)-Ir(1)	71.0(9)
C(14)-Ir(1)-C(10)	85.5(6)	N(2)-C(7)-C(8)	108.3(11)
F(5)-P(1)-F(3)	88.4(17)	C(9)-C(8)-C(7)	121.1(15)
F(5)-P(1)-F(1)	102(2)	C(9)-C(8)-Ir(1)	69.9(7)
F(3)-P(1)-F(1)	87.4(10)	C(7)-C(8)-Ir(1)	109.9(9)
F(5)-P(1)-F(2)	174(2)	C(8)-C(9)-Ir(1)	73.3(7)
F(3)-P(1)-F(2)	90.5(13)	C(11)-C(10)-C(17)	122.8(15)
F(1)-P(1)-F(2)	84.3(17)	C(11)-C(10)-Ir(1)	72.6(11)
F(5)-P(1)-F(6)	94.0(16)	C(17)-C(10)-Ir(1)	110.6(11)
F(3)-P(1)-F(6)	177.4(14)	C(10)-C(11)-C(12)	127.7(16)
F(1)-P(1)-F(6)	93.3(10)	C(10)-C(11)-Ir(1)	73.7(9)
F(2)-P(1)-F(6)	87.1(13)	C(12)-C(11)-Ir(1)	111.4(10)
F(5)-P(1)-F(4)	82.3(17)	C(11)-C(12)-C(13)	113.9(13)
F(3)-P(1)-F(4)	94.7(10)	C(12)-C(13)-C(14)	117.6(14)
F(1)-P(1)-F(4)	175.7(14)	C(15)-C(14)-C(13)	129.6(18)
F(2)-P(1)-F(4)	91.8(16)	C(15)-C(14)-Ir(1)	70.1(8)
F(6)-P(1)-F(4)	84.5(9)	C(13)-C(14)-Ir(1)	111.2(10)
C(1)-N(1)-C(2)	109.8(12)	C(14)-C(15)-C(16)	120.1(16)
C(1)-N(1)-C(4)	117.7(12)	C(14)-C(15)-Ir(1)	76.1(9)
C(2)-N(1)-C(4)	132.5(14)	C(16)-C(15)-Ir(1)	111.6(10)
N(1)-C(1)-N(2)	108.4(12)	C(17)-C(16)-C(15)	114.1(17)
N(1)-C(1)-Ir(1)	124.5(9)	C(16)-C(17)-C(10)	118.5(16)

3.3.- Experimental crystallographic data collection for compound **3**.

Figure 3. ORTEP diagram of complex **3** showing 35% probability ellipsoids. Hydrogen atoms have been omitted for clarity.

 Table 7. Crystal data and structure refinement for 3.

Identification code	str871m	
Empirical formula	C21 H32 Cl Ir N2	
Formula weight	540.14	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.0233(11) Å	α= 64.168(2)°.
	b = 13.9740(14) Å	β= 85.560(3)°.
	c = 14.7666(15) Å	$\gamma = 89.213(2)^{\circ}$.
Volume	2225.8(4) Å ³	
Ζ	4	
Density (calculated)	1.612 Mg/m ³	
Absorption coefficient	6.124 mm ⁻¹	
F(000)	1064	
Crystal size	0.13 x 0.11 x 0.09 mm ³	
Theta range for data collection	1.62 to 25.00°.	
Index ranges	-13<=h<=14, -14<=k<=16, -	-11<=1<=17
Reflections collected	12840	
Independent reflections	7842 [R(int) = 0.0421]	
Completeness to theta = 25.00°	100.0 %	
Absorption correction	Bruker SADABS	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	7842 / 32 / 448	
Goodness-of-fit on F ²	1.005	
Final R indices [I>2sigma(I)]	R1 = 0.0468, wR2 = 0.1019	
R indices (all data) $R1 = 0.0898, wR2 = 0.1205$		
Largest diff. peak and hole	1.104 and -0.768 e.Å ⁻³	

Table 8. Bond lengths [Å] and angles $[\circ]$ for 3.

Ir(1)-C(1)	2.030(10)	N(31)-C(31)	1.379(12)
Ir(1)-C(15)	2.108(10)	N(31)-C(34)	1.447(13)
Ir(1)-C(14)	2.110(11)	C(31)-N(32)	1.353(11)
Ir(1)-C(18)	2.171(10)	N(32)-C(33)	1.387(12)
Ir(1)-C(19)	2.190(12)	N(32)-C(39)	1.454(11)
Ir(1)-Cl(1)	2.358(3)	C(32)-C(33)	1.323(14)
N(1)-C(2)	1.366(12)	C(44)-C(45)	1.436(15)
N(1)-C(1)	1.376(12)	C(44)-C(51)	1.485(15)
N(1)-C(4)	1.478(12)	C(45)-C(46)	1.513(15)
C(1)-N(2)	1.329(12)	C(46)-C(47)	1.528(16)
N(2)-C(3)	1.377(13)	C(47)-C(48)	1.506(15)
N(2)-C(9)	1.430(12)	C(48)-C(49)	1.389(14)
C(2)-C(3)	1.327(14)	C(49)-C(50)	1.529(16)
C(4)-C(5)	1.504(12)	C(50)-C(51)	1.575(17)
C(5)-C(6)	1.537(12)	C(34)-C(35)	1.496(12)
Cl(31)-Ir(31)	2.360(3)	C(35)-C(36)	1.580(15)
C(6)-C(7)	1.420(19)	C(36)-C(37)	1.386(19)
C(7)-C(8)	1.009(18)	C(37)-C(38)	1.016(18)
C(9)-C(10)	1.489(15)	C(39)-C(40)	1.489(11)
C(10)-C(11)	1.53(2)	C(40)-C(41)	1.640(18)
C(11)-C(12)	1.521(10)	C(41)-C(42)	1.43(2)
C(12)-C(13)	0.97(3)	C(42)-C(43)	1.04(2)
C(14)-C(15)	1.399(15)	C(1)-Ir(1)-C(15)	93.4(4)
C(14)-C(21)	1.525(18)	C(1)-Ir(1)-C(14)	93.6(4)
C(15)-C(16)	1.529(15)	C(15)-Ir(1)-C(14)	38.7(4)
C(16)-C(17)	1.423(15)	C(1)-Ir(1)-C(18)	162.1(4)
C(17)-C(18)	1.486(16)	C(15)-Ir(1)-C(18)	81.4(4)
C(18)-C(19)	1.392(16)	C(14)-Ir(1)-C(18)	92.9(5)
C(19)-C(20)	1.541(19)	C(1)-Ir(1)-C(19)	160.6(5)
C(20)-C(21)	1.449(19)	C(15)-Ir(1)-C(19)	94.6(5)
Ir(31)-C(31)	2.020(10)	C(14)-Ir(1)-C(19)	81.8(5)
Ir(31)-C(45)	2.103(10)	C(18)-Ir(1)-C(19)	37.2(4)
Ir(31)-C(44)	2.137(11)	C(1)-Ir(1)-Cl(1)	87.0(3)
Ir(31)-C(49)	2.180(10)	C(15)-Ir(1)-Cl(1)	160.4(3)
Ir(31)-C(48)	2.180(9)	C(14)-Ir(1)-Cl(1)	160.8(4)
N(31)-C(32)	1.365(12)	C(18)-Ir(1)-Cl(1)	92.2(3)

C(19)-Ir(1)-Cl(1)	91.3(4)	C(31)-Ir(31)-C(45)	92.3(4)
C(2)-N(1)-C(1)	109.8(9)	C(31)-Ir(31)-C(44)	95.1(4)
C(2)-N(1)-C(4)	125.7(9)	C(45)-Ir(31)-C(44)	39.6(4)
C(1)-N(1)-C(4)	124.2(8)	C(31)-Ir(31)-C(49)	157.6(4)
N(2)-C(1)-N(1)	104.4(9)	C(45)-Ir(31)-C(49)	99.0(5)
N(2)-C(1)-Ir(1)	127.9(8)	C(44)-Ir(31)-C(49)	81.8(5)
N(1)-C(1)-Ir(1)	127.6(7)	C(31)-Ir(31)-C(48)	165.2(4)
C(1)-N(2)-C(3)	111.4(9)	C(45)-Ir(31)-C(48)	81.8(4)
C(1)-N(2)-C(9)	125.5(10)	C(44)-Ir(31)-C(48)	88.9(4)
C(3)-N(2)-C(9)	122.9(9)	C(49)-Ir(31)-C(48)	37.2(4)
C(3)-C(2)-N(1)	107.7(10)	C(31)-Ir(31)-Cl(31)	88.0(3)
C(2)-C(3)-N(2)	106.7(10)	C(45)-Ir(31)-Cl(31)	155.6(4)
N(1)-C(4)-C(5)	111.6(9)	C(44)-Ir(31)-Cl(31)	164.6(3)
C(4)-C(5)-C(6)	113.6(10)	C(49)-Ir(31)-Cl(31)	89.6(3)
C(7)-C(6)-C(5)	113.9(14)	C(48)-Ir(31)-Cl(31)	91.9(3)
C(8)-C(7)-C(6)	144(3)	C(32)-N(31)-C(31)	110.5(9)
N(2)-C(9)-C(10)	115.3(9)	C(32)-N(31)-C(34)	126.8(9)
C(9)-C(10)-C(11)	113.0(12)	C(31)-N(31)-C(34)	122.6(9)
C(12)-C(11)-C(10)	112.7(18)	N(32)-C(31)-N(31)	103.8(9)
C(13)-C(12)-C(11)	134(5)	N(32)-C(31)-Ir(31)	127.5(8)
C(15)-C(14)-C(21)	124.3(14)	N(31)-C(31)-Ir(31)	128.6(7)
C(15)-C(14)-Ir(1)	70.6(6)	C(31)-N(32)-C(33)	110.8(9)
C(21)-C(14)-Ir(1)	112.3(8)	C(31)-N(32)-C(39)	124.6(9)
C(14)-C(15)-C(16)	122.9(12)	C(33)-N(32)-C(39)	124.4(9)
C(14)-C(15)-Ir(1)	70.7(6)	C(33)-C(32)-N(31)	107.9(10)
C(16)-C(15)-Ir(1)	110.6(8)	C(32)-C(33)-N(32)	107.1(10)
C(17)-C(16)-C(15)	118.2(11)	C(45)-C(44)-C(51)	123.9(10)
C(16)-C(17)-C(18)	115.7(11)	C(45)-C(44)-Ir(31)	68.9(6)
C(19)-C(18)-C(17)	124.3(13)	C(51)-C(44)-Ir(31)	114.3(8)
C(19)-C(18)-Ir(1)	72.1(7)	C(44)-C(45)-C(46)	123.0(11)
C(17)-C(18)-Ir(1)	111.9(8)	C(44)-C(45)-Ir(31)	71.5(6)
C(18)-C(19)-C(20)	125.4(14)	C(46)-C(45)-Ir(31)	109.8(8)
C(18)-C(19)-Ir(1)	70.7(6)	C(45)-C(46)-C(47)	115.0(9)
C(20)-C(19)-Ir(1)	110.1(9)	C(48)-C(47)-C(46)	110.9(9)
C(21)-C(20)-C(19)	114.9(12)	C(49)-C(48)-C(47)	125.8(11)
C(20)-C(21)-C(14)	117.8(12)	C(49)-C(48)-Ir(31)	71.4(6)

C(47)-C(48)-Ir(31)	112.8(8)
C(48)-C(49)-C(50)	124.2(12)
C(48)-C(49)-Ir(31)	71.4(6)
C(50)-C(49)-Ir(31)	108.6(8)
C(49)-C(50)-C(51)	111.7(10)
C(44)-C(51)-C(50)	112.4(10)
N(31)-C(34)-C(35)	111.1(9)
C(34)-C(35)-C(36)	109.6(11)
C(37)-C(36)-C(35)	113.5(16)
C(38)-C(37)-C(36)	128(2)
N(32)-C(39)-C(40)	112.4(8)
C(39)-C(40)-C(41)	108.9(11)
C(42)-C(41)-C(40)	103.4(18)
C(43)-C(42)-C(41)	121(3)

4.- NMR characterization of complex 1a.

Figure 4: Proton NMR of complex 1a at 25 °C

Figure 5: Proton NMR of complex 1a at -15 °C

Figure 6: TOCSY 1D NMR of complex 1a at -10 °C

Figure 7: ¹³C NMR of complex 1a at 25 °C

Figure 8: Cosy NMR experiment of complex 1a at -5 °C

5.- Variable-Temperature NMR Studies.

The room temperature ¹H NMR of complex **1a** showed a different environment for the two azole-ring protons at 6.89 and 6.67 ppm. This observation and the low frequency alkene resonances are consistent with one olefin coordination. The upper and lower side of the iridium complex is different making all the residences magnetically inequivalent. The natural line width of the signals at room temperature is broad (e.g. 6.89 ppm, $w_{1/2} = 9.43$ Hz; solvent CDCl₃ $w_{1/2} = 0.98$ Hz) indicating that a fluxional process is involved.¹⁻³ Complex **1a** dynamics agree with a coordination/decoordination from the olefin, Scheme 3. Metal-carbene rotation is not feasible as observed previously in rhodium analogous complexes.^{4, 5} Studies by Enders show that hindered rotation is found for NHC-rhodium(I) complexes with bulky cyclooctadiene or norbornadiene ligands.^{6, 7}

Scheme 1. Dynamic process for complex 1a.

Compound **1a** shows a sharp AB pattern for the azole-ring protons at -15 °C. At this temperature, completed NMR assignment has been made by HETCOR and COSY experiments. As the temperature is increased, the peaks broaden and coalesce into a singlet at 50 °C. The rate constant ($k = 253 \text{ s}^{-1}$) and the free energy ($\Delta G^{\neq} = 15.4$ Kcal/mol) at 50 °C shows that the fluxional process is fast and feasible. A set of variable-temperature ¹H spectra for **1a** was measured, and these are shown in Figure 9. At -15 °C, all of the signals are relatively sharp and reveal two nonequivalent azole-ring protons at 6.89 and 6.67 ppm, in the ratio 1:1. A line shape analysis⁸ from the data of figure 4 (-15 °C to 40 °C in CDCl₃) affords the rate constants and thermodynamic parameters, which are summarized in Figure 10. The olefin coordination/decoordination fluxional process is governed by enthalpy with negligible variation of entropy as expected for an intramolecular exchange. The thermodynamic

parameters are in good agreement with experimental and theoretical data for olefin coordination.⁹⁻¹¹

Figure 9. Variable temperature analysis for compound **1a** from -15 °C to 40 °C. Solvent CDCl₃, 5 mM, 500 MHz.

A similar variable temperature study of complex **1a** has been done using ¹³C NMR (75 MHz). The two different signals from the carbons attach directly to the azol ring appear at 52.6 and 52.2 ppm. As the temperature is increased, the peaks broaden and coalesce into a singlet at 35 °C. The rate constant is $k = 62.9 \text{ s}^{-1}$ and the free energy $\Delta G^{\neq} = 15.5$ Kcal/mol. The results agree well with the ones obtained previously using ¹H NMR.

Figure 10. Complex **1a** line shape Analysis. Selected signal at 6.89 ppm, H_{imid}. Linear regression from Eq. $\ln(k/T) = -(\Delta H^{\neq}/T)(1/T) + \Delta S^{\neq}/R + 23.76$. Results: $\Delta H^{\neq} = 20.9$ Kcal/mol; $\Delta S^{\neq} = 17.4$ Kcal/mol.

5.1.- Kinetic constant at the coalescence temperature for complex 1a.

Coalescence T (K)	Equation	$\Delta v (Hz)$	k (s ⁻¹)
	$k = \pi \Delta v / 1.414$		253.13
323.15	$k = 2,22[(\Delta v)^{2} + 6^{*}(Jab)^{2}]^{0.5}$	113.95	253.20

Jab(Hz) = 1.999

Temp (K)	w (Hz)	wo (Hz)	w - wo (Hz)	k= л (w - wo) (s⁻¹)	k/T	1/T	ln(k/T)
258,15	3,47						
263,15	3,76	3,47	0,29	0,91106185	0,00346214	0,00380011	-5,6658687
268,15	3,48	3,47	0,01	0,03141593	0,00011716	0,00372926	- 9,05198684
273,15	4,13	3,47	0,66	2,07345112	0,00759089	0,00366099	- 4,88080667
278,15	3,89	3,47	0,42	1,31946889	0,00474373	0,00359518	- 5,35093124
283,15	4,47	3,47	1	3,1415926	0,01109515	0,0035317	- 4,50124692
288,15	5,15	3,47	1,68	5,27787557	0,01831642	0,00347041	- 3,99995752
293,15	6,27	3,47	2,8	8,79645928	0,03000668	0,00341122	- 3,50633514
298,15	9,43	3,47	5,96	18,7238919	0,06280024	0,00335402	- 2,76779637
303,15	14,09	3,47	10,62	33,3637134	0,11005678	0,0032987	- 2,20675885
308,15	20,75	3,47	17,28	54,2867201	0,17616979	0,00324517	- 1,73630705
313,15	42,03	3,47	38,56	121,139811	0,38684276	0,00319336	- 0 9/073607
318,15	126,32	3,47	122,85	385,944651	1,21309021	0,00314317	0,193171

5.2.- Line shape analysis data for complex 1a signal at 6.9ppm.

Eyring Equation: $\ln(k/T) = -(\Delta H/R)(1/T) + \Delta S/R + 23.76$

 $\Delta H = 20.9 \text{ Kcal/mol}$

 $\Delta S = 17.42 \text{ cal/mol/K}$

K (s-1)	ln k	1/T (K)		
k= л (w - wo)				
0,91106185	-0,09314449	0,00380011		
0,03141593	-3,46044032	0,00372926		
2,07345112	0,72921442	0,00366099		
1,31946889	0,2772293	0,00359518		
3,1415926	1,14472987	0,0035317		
5,27787557	1,66352366	0,00347041		
8,79645928	2,17434929	0,00341122		
18,7238919	2,92980035	0,00335402		
33,3637134	3,50746888	0,0032987		
54,2867201	3,99427963	0,00324517		
121,139811	4,79694534	0,00319336		
385,944651	5,95569397	0,00314317		

The Arrhenius Activation Energy Ea: $\ln k = \ln k0 - Ea/(RT)$ Ea = 21.50 Kcal/mol.

5.3.- Line shape analysis data for complex 1a signal at 6.7 ppm.

Temp (K)	w (Hz)	wo (Hz)	w - wo (Hz)	К (s-1) k= л (w - wo)	k/T	1/T	ln(k/T)
258,15	3,55	3,55					
263,15	3,79	3,55	0,24	0,75398222	0,00286522	0,00380011	-5,8551107
268,15	3,53	3,55	-0,02	-0,06283185	-0,00023432	0,00372926	#¡NUM!
273,15	4,08	3,55	0,53	1,66504408	0,00609571	0,00366099	-5,1001695
278,15	3,82	3,55	0,27	0,84823	0,00304954	0,00359518	-5,79276399
283,15	4,41	3,55	0,86	2,70176964	0,00954183	0,0035317	-4,65206981
288,15	5,16	3,55	1,61	5,05796409	0,01755323	0,00347041	-4,04251713
293,15	6,25	3,55	2,7	8,48230002	0,02893502	0,00341122	-3,54270278
298,15	9,3	3,55	5,75	18,0641575	0,06058748	0,00335402	-2,80366699
303,15	13,79	3,55	10,24	32,1699082	0,10611878	0,0032987	-2,24319624
308,15	20,31	3,55	16,76	52,653092	0,17086838	0,00324517	-1,76686171
313,15	45,05	3,55	41,5	130,376093	0,41633752	0,00319336	-0,87625901
318,15	132,85	3,55	129,3	406,207923	1,27678115	0,00314317	0,24434218

Eyring Equation: $\ln(k/T) = -(\Delta H/R)(1/T) + \Delta S/R + 23.76$

 $\Delta H = 22.7 \text{ Kcal/mol}$

 $\Delta S = 23.24 \text{ cal/mol/K}$

K (s-1)		
k= л (w - wo)	ln k	1/T (K)
0,75398222	-0,28238649	0,00380011
-0,06283185	#¡NUM!	0,00372926
1,66504408	0,5098516	0,00366099
0,84823	-0,16460345	0,00359518
2,70176964	0,99390698	0,0035317
5,05796409	1,62096405	0,00347041
8,48230002	2,13798164	0,00341122
18,0641575	2,89392972	0,00335402
32,1699082	3,47103149	0,0032987
52,653092	3,96372496	0,00324517
130,376093	4,8704233	0,00319336
406,207923	6,00686515	0,00314317

The Arrhenius Activation Energy Ea: $\ln k = \ln k0 - Ea/(RT)$ Ea = 23.27 Kcal/mol.

6.- Ligand precursors

1-(4-pentenyl)-imidazole. A mixture of imidazole (1.4 g, 20.6 mmol), KOH (1.4 g, 25.7 mmol), TBABr (200mg, 0.62 mmol) and a four drops of water were stirred for 1 h at room temperature. After, pentenyl bromide (2.8 ml, 24.7 mmol) was added and the suspension was stirred at room temperature for 24 h. The mixture was quenched with water (20 ml), extracted with CH_2Cl_2 (3 x 50 ml) and dry over Na_2SO_4 . The volatiles were removed under reduced pressure and the crude was purified through a flash silica-gel chromatography with acetone/CH₂Cl₂ (1:1). Yield: 2.34 g, 83%, orange oil. ¹H NMR (500 MHz, CDCl₃): δ 7.43 (s, 1H, NC*H*N), 7.03 (s, 1H, NC*H*CHN), 6.87 (s, 1H, NCH*CH*N), 5.79 (m, 1H, -C*H*=CH₂), 5.05 (m, 2H, -CH=CH₂), 3.94 (m, 2H, NCH₂-), 2.07 (m, 2H, -CH₂-), 1.90 (m, 2H, -CH₂-).

1, 3-Bis(4-pentenyl)-imidazolium Bromide. 4-pentenyl bromide (1ml, 8.76 mmol) and N-pentenylimidazole (1g, 7.3 mmol) were reacted without solvent for 4h at 80 °C. The solid was washed with Et₂O (3 x 50 mL) and dry under vacuum. Yield: 1.8 g, 86%. ¹H NMR (500 MHz, CDCl₃): δ 10.59 (s, 1H, NC*H*N), 7.42 (s, 2H, NC*H*C*H*N),

5.76 (m, 2H, -C*H*=CH₂), 5.03 (m, 4H, -CH=C*H*₂), 4.38 (t, ³J_{H-H} = 7.2 Hz, 4H, NC*H*₂-), 2.15 (m, 4H, -C*H*₂-), 2.08 (m, 4H, -C*H*₂-). ¹³C NMR (75.4 MHz, CDCl₃): δ 136.5 (NCN), 136.1 (-CH=CH₂), 122.6 (NCHCHN), 116.2 (-CH=CH₂), 49.2 (NCH₂-), 30.0 (-CH₂-), 29.2 (-CH₂-).

1, 3-Bis(2-propenyl)-imidazolium Bromide. This ligand precursor prepared according to literature methodologies.¹² To a suspension of allyl amine (7.5 mL, 0.1 mol) and hydrochloric acid (8.5 mL, 0.05 mol aqueous solution 6M) in toluene (20 mL) at 0 °C, was added dropwise formaldehyde (3.8 mL, 0.05 mol) during 10 min while the solution temperature was kept below 3 °C. Glyoxal (5.73 mL, 0.05 mol) was then added dropwise and the temperature kept below 25 °C overnight. Azeotropic distillation (Dean-Stark) and solvent removal afforded a pale yellow oil. Anion exchange afforded the pure product. Yield (6.9 g, 80%). ¹H NMR (300 MHz, CDCl₃): δ 10.7 (s, 1H, NC*H*N), 7.53 (s, 2H, *CH*=CH) 5.99 – 5.94 (m, 2H, -*CH*=CH₂), 5.43 – 5.40 (m, 4H, -CH=CH₂), 4.93 (s, 4H, N-*CH*₂-). ¹³C NMR (75.4 MHz, CDCl₃): δ 137.4 (*NC*N), 130.4 (*C*H=*C*H), 122.6 (-CH=*C*H₂), 122.3 (-CH=*C*H₂), 52.3 (NCH₂-).

4, 5-dichloro-1-(2-propenyl)-imidazole. Allyl bromide (690 µL, 8 mmol) and KOH (616 mg, 11 mmol) were added to a solution of 4,5-dichloroimidazole (1g, 7.3 mmol) in MeOH (15 ml). The mixture was stirred, under reflux, at 68 °C for 24 hours. After filtration, the volatiles were removed under reduced pressure. The mixture was quenched with water (20 ml), extracted with CH₂Cl₂ (3 x 50 ml) and dry over Na₂SO₄. A colourless oil of 4, 5-dichloro-1-(2-propenyl)-imidazole was obtained. Yield (1.07 g, 71 %). ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H, NC*H*N), 5.94 (m, 1H, NCH₂CH=CH₂), 5.33 d, J_{HH} = 10.2 HZ, NCH2CH=CH*H_{cis}*), 5.17 (d, 1H, NCH₂CH=CH*H_{trans}*, J_{HH} = 15 Hz), 4.51 (d, 2H, NC*H*₂CH=CH₂, J_{HH} = 5.7 Hz)

4, 5-dichloro-1,3-Bis(2-propenyl)-imidazolium Bromide. Allyl bromide (1.38 mL, 16 mmol) and 4, 5-dichloro-1-(2-propenyl)-imidazole (2.4 g, 14 mmol) were reacted without solvent for 12h at 70 °C. The solid was washed with Et₂O (3 x 50 mL) and dry under vacuum. Yield: 3.5 g, 85%. ¹H NMR (300 MHz, CDCl₃): δ 8.82 (s, 1H, NC*H*N), 6.02 – 5.97 (m, 2H, -C*H*=CH₂), 5.54 – 5.47 (m, 4H, -CH=CH₂), 4.82 (d, 4H,

 ${}^{3}J_{H-H} = 6.3 \text{ Hz}, \text{ N-C}H_{2}-$). ${}^{13}C \text{ NMR} (75.4 \text{ MHz}, \text{CDCl}_{3}): \delta 136.8 (NCN), 128.1 (C-Cl), 124.1 (-CH=CH_2), 123.9 (-CH=CH_2), 51.8 (NCH_2-).$

4, **5-dimethyl-1,3-Bis(2-propenyl)-imidazolium Hexafluorophosphate.** This ligand precursor was prepared following the methodology described for compound 1, 3-Bis(2- propenyl)-imidazolium Chloride. To a suspension of Allyl amine (7.5 mL, 0.1 mol) and hydrochloric acid (8.5 mL, 0.05 mol aqueous solution 6M) in toluene (20 mL) at 0 °C was added dropwise formaldehyde (3.8 mL, 0.05 mol) during 10 min while the solution temperature was kept below 3 °C, 2,3-Butanedione (4.5 mL, 0.05 mol) was then added dropwise and the temperature kept below 25 °C overnight. Azeotropic distillation (Dean-Stark) and solvent removal afforded a colourless impure oil. The anion exchange (by PF₆⁻) afforded the pure product. Yield (7.9 g, 75%). ¹H NMR (300 MHz, CDCl₃): δ 8.5 (s, 1H, NC*H*N), 5.99 – 5.90 (m, 2H, -C*H*=CH₂), 5.42 (d, 2H, ³J_{H-H} = 10.5 Hz, -CH=CH₂), 5.27 (d, 2H, ³J_{H-H} = 17.1 Hz, -CH=CH₂), 4.68 (d, 4H, ²J_{H-H} = 6.0 Hz, N-CH₂), 2.17 (s, 6H, C-CH₃).

3-methyl, 1-(2-propenyl)-imidaozolin-2-ylidene [(1, 2, 5, 6-ŋ)-1-5-cyclooctadiene] chloro iridium (5). Silver oxide (70 mg, 0.3 mmol) was added to a solution of 3methyl-1-propenylimidazolium bromide¹³ (122 mg, 0.6 mmol) in CH₂Cl₂. The solution was stirred at room temperature for 1h and then [IrCl(COD)]₂ (200 mg, 0.3 mmol) was added. The mixture was stirred at room temperature for 2h and then filtered through Celite. After evaporation of the solvent, the excess of silver oxide was precipitated in a mixture of CH₂Cl₂/hexanes. The filtrate was cold at -20°C and compound 5 precipitated as a white solid. Yield: 180 mg (65%). ¹H NMR (500 MHz, CDCl₃): δ 6.83 (s, 1H, NCHCHN), 6.64 (s, 1H, NCHCHN), 4.67 (m, 1H, COD), 4.18 - 4.12 (m, 3H, NCHHCH=CH₂, NCHHCH=CH₂ COD), 3.92 (s, 3H, -CH₃), 3.65 (d, ${}^{3}J_{HH} = 11.5$ Hz, NCHHCH=CH₂), 3.54 (m, 1H, COD), 3.44 (m, 1H, COD), 2.93 (m, 1H, COD), 2.70 (m, 2H, COD), 2.49 (m, 1H, COD), 2.35 - 2.25 (m, 3H, COD and NCH₂CH=CH*H*), 1.93 (m, 1H, COD), 1.90 (d, 1H, ³J_{HHtrans} = 9.3 Hz, NCH₂CH=CH*H*), 1.61 – 1.59 (m, 1H, COD). ¹³C NMR (75 MHz, CDCl₃): δ 160.88 (C-Ir), 123.16 (CH imidazole), 117.35 (CH imidazole), 98.50 (CH cod), 97.62 (CH cod), 60.39 (NCH₂CH=CH₂), 55.10 (CH cod), 52.59 (NCH₂CH=CH₂), 46.92 (CH cod), 40.40 (NCH₂CH=CH₂), 37.26 (NCH₃), 35.51 (CH₂ cod), 32.93 (CH₂ cod), 29.53

CH₂ cod), 28.02 (CH₂ cod). Electrospray Ms. Cone 25V. m/z (fragment): $[M-Cl]^+$ = 423.

References:

- 1. C. J. Bourgeois, H. Huang, R. B. Larichev, L. N. Zakharov, A. L. Rheingold and R. P. Hughes, *Organometallics*, 2007, **26**, 264-271.
- 2. S. Burling, S. Douglas, M. F. Mahon, D. Nama, P. S. Pregosin and M. K. Whittlesey, *Organometallics*, 2006, **25**, 2642-2648.
- 3. J. W. Faller and P. P. Fontaine, J. Organomet. Chem., 2006, 691, 5798-5803.
- 4. M. J. Doyle and M. F. Lappert, J. Chem. Soc.-Chem. Commun., 1974, 679-680.
- 5. A. R. Chianese, X. W. Li, M. C. Janzen, J. W. Faller and R. H. Crabtree, *Organometallics*, 2003, **22**, 1663-1667.
- 6. D. Enders, H. Gielen, J. Runsink, K. Breuer, S. Brode and K. Boehn, *Eur. J. Inorg. Chem.*, 1998, 913-919.
- 7. D. Enders and H. Gielen, J. Organomet. Chem., 2001, 617, 70-80.
- 8. J. Sandstrom, *Dynamic NMR Spectroscopy*, Academic Press, London, 1982.
- 9. F. A. Jalon, B. R. Manzano, F. Gomez-de la Torre, A. M. Lopez-Agenjo, A. M. Rodriguez, W. Weissensteiner, T. Sturm, J. Mahia and M. Maestro, *J. Chem. Soc.-Dalton Trans.*, 2001, 2417-2424.
- 10. C. P. Casey, M. A. Fagan and S. L. Hallenbeck, *Organometallics*, 1998, **17**, 287-289.
- 11. M. V. Galakhov, G. Heinz and P. Royo, Chem. Commun., 1998, 17-18.
- 12. A. J. Arduengo, U. S., Patent 6 177575, 2001.
- 13. W. Z. Chen and F. H. Liu, J. Organomet. Chem., 2003, 673, 5-12.