SUPPLEMENTARY MATERIAL

Calculation of similarity

The matching of two nodes in the comparison between two molecules yields a weight given by the following equation:

$$sim(a, M(a)) = \sum_{k=1}^{11} W_k \min(a_k, M(a)_k)$$

where a is the node in the first molecule, M(a) its match, k runs over the indices of the features listed in Table 2, W_k , a_k , and $M(a)_k$ are the weight, and the value of the corresponding feature in the first and the second node, respectively.

The overall similarity is given as the sum of all similarities between matched nodes, normalized over the maximum of the self similarities of the compared molecules.

$$cw(K, L, M) = \sum_{a \in K} sim(a, M(a))$$
$$s(K, L, M) = \frac{cw(K, L, M)}{\max(cw(K, K, I), cw(L, L), I)}$$

where K and L are the ligands being compared, M is the mapping found by the algorithm, and I is the identity mapping.

Selection Dragon-ID Description Weight order 1 ATS2p -4.865 Broto-Moreau autocorrelation of a topological structure - lag 2 / weighted by atomicpolarizabilities L2s 2 2.383 2nd component size directional WHIM index / weighted by atomic electrotopological states 3 3D-MoRSE - signal 22 / unweighted -1.794 Mor22u nArOH 4 -2.968number of aromatic hydroxyl groups 5 Ms 2.975 mean electrotopological state 6 R3u+ 2.533 R maximal autocorrelation of lag 3 / unweighted 7 EEiq11r 2.472 Eigenvalue 11 from edge adj. matrix weighted by resonance integrals 8 Mor17p 1.182 3D-MoRSE - signal 17 / weighted by atomic polarizabilities 9 MLOGP2 Squared Moriguchi octanol-water partition coeff. -2.387 $(\log P^2)$ 3.448 10 nCbnumber of substituted benzene C(sp2) 11 DISPe d COMMA2 value / weighted by atomic Sanderson -0.941 electronegativities 12 RDF100m Radial Distribution Function - 10.0 / weighted by 2.351

Selected descriptors in the SVMR model

Table 1 Shown are the selected descriptors of the applied SVMR, their weights in the model and the selection order

		atomic masses	
13	GGI5	topological charge index of order 5	-1.157
14	S-107	R2S / RS-SR atom-centred fragments	-1.161
15	H-049	H attached to $C3(sp3) / C2(sp2) / C3(sp2) / C3(sp)$	0.762
		atom-centred fragments	
16	EEia10d	Figenvalue 10 from edge adj matrix weighted hy	1.548
	g	dipole moments	
		dipole moments	
17	Mor12m	3D MoPSE signal 12 / weighted by atomic	-0 668
.,	Morizin	massas	0.000
18	Mor19n	2D MoDSE signal 10 / waighted by stomia	0 958
10	Morrop	polorizabilitios	0.000
19	MATS5V	Moran autocorrelation lag 5 / weighted by stomia	0 705
15	MATOOV	wor der Waals volumes	0.700
20	Mor02m	2D MaDSE signal 02 / mais http://www.	1 559
20	WOIOSIII	SD-MORSE - Signal 05 / weighted by atomic	1.550
21	C 015	masses	0 662
21	C-015 Mar21v	=CH2 atom-centred fragments	-0.003
22	IVIOIZ I V	3D-MoRSE - signal 21 / weighted by atomic van	0.000
00	DIGA	der Waals volumes	0.000
23	BIC1	bond information content (neighborhood symmetry	0.966
~ 1	0104	of 1-order)	
24	SIC1	structural information content (neighborhood	-0.491
		symmetry of 1-order)	
25	ISH	standardized information content on the leverage	-0.224
		equality	
26	BELe6	lowest eigenvalue n. 6 of Burden matrix / weighted	-2.148
		by atomic Sanderson electronegativities	
27	EEig06r	Eigenvalue 06 from edge adj. matrix weighted by	1.883
		resonance integrals	
28	EEig09x	Eigenvalue 09 from edge adj. matrix weighted by	1.442
		edge degrees	
29	T(OF)	sum of topological distances between O.F	-0.557
30	G2	gravitational index G2 (bond-restricted)	-1.267
31	MAXDN	maximal electrotopological negative variation	-0.436
32	nRCOOR	number of esters (aliphatic)	-0.774
33	RDF050e	Radial Distribution Function - 5.0 / weighted by	1.265
		atomic Sanderson electronegativities	
34	BLTD48	Verhaar model of Daphnia base-line toxicity from	2.663
		MLOGP (mmol/l)	
35	C-031	XCR—X atom-centred fragments	0.909
36	SPI	superpendentic index	-1.408
37	H5p	H autocorrelation of lag 5 / weighted by atomic	-0.842
		nolarizabilities	0.012
38		Polarizaumuco Radial Distribution Function 5.0 / unweighted	1 305
39	RTu	R total index / unweighted	-1 700
00	1110	K total muck / unweighted	1.199

40	nPyrazines	number of pyrazines	-0.132
41	G3e	component symmetry directional WHIM index /	-1.483
		weighted by atomic Sanderson electronegativities	
42	Lop	Lopping centric index	0.613
43	nArNR2	number of tertiary amines (aromatic)	0.827
44	piPC08	molecular multiple path count of order 08	1.22
45	C-037	Ar-CH=X atom-centred fragments	0.674
46	G3v	3st component symmetry directional WHIM index	1.125
		/ weighted by atomic van der Waals volumes	
47	piPC07	molecular multiple path count of order 07	-1.328
48	BLI	Kier benzene-likeliness index	-0.285
49	EEig14r	Eigenvalue 14 from edge adi, matrix weighted by	0.724
		resonance integrals	
50	X2	connectivity index chi-2	-1.211
51	HATS6u	leverage-weighted autocorrelation of lag 6 /	0.552
		unweighted	
52	Depressant-50	Ghose-Viswanadhan-Wendoloski antidepressant at	-0.614
		50% (drug-like index)	
53	D/Dr08	distance/detour ring index of order 8	0.297
54	ATS6p	Broto-Moreau autocorrelation of a topological	-1.059
		structure - lag 6 / weighted by atomic	
		polarizabilities	
55	HATS8p	leverage-weighted autocorrelation of lag 8 /	0.69
		weighted by atomic polarizabilities	
56	R7u	R autocorrelation of lag 7 / unweighted	-0.861
57	nPyrazoles	number of Pyrazoles	0.441
58	RTe+	R maximal index / weighted by atomic Sanderson	-0.188
		electronegativities	
59	R6e+	R maximal autocorrelation of lag 6 / weighted by	-0.279
		atomic Sanderson electronegativities	
60	ATS7m	Broto-Moreau autocorrelation of a topological	-0.373
		structure - lag 7 / weighted by atomic masses	
61	C-022	#CR / R = C = R atom-centred fragments	0.224
62	H7v	H autocorrelation of lag 7 / weighted by atomic van	0.274
		der Waals volumes	
63	ATS8v	Broto-Moreau autocorrelation of a topological	-0.252
		structure - lag 8 / weighted by atomic van der	
		Waals volumes	
64	X1Av	average valence connectivity index chi-1	-0.256
65	IAC	total information index of atomic composition	-0.475
66	IDET	total information content on the distance equality	0.835
67	ATS7p	Broto-Moreau autocorrelation of a topological	0.301
		structure - lag 7 / weighted by atomic	
		polarizabilities	
68	nArCOOR	number of esters (aromatic)	-0.069

Remaining plots of the double cross validation

Figure 1 Prediction of ΔG° for subset S2 by means of the regression model for validation set V2. ($r^2 = 0.84$, RMSE = 2.32).

Figure 2 Prediction of ΔG° for subset S3 by means of the regression model for validation set V1 ($r^2 = 0.85$, RMSE = 1.88).