Photophysical, Dynamic and Redox Behavior of *tris*-(2,6-Diisopropylphenyl)phosphine

René T. Boeré,¹* Alan M. Bond,² Steve Cronin,¹ Noel W. Duffy,² Paul Hazendonk,¹ Jason D. Masuda,¹ Kyle Pollard,¹ Tracey L. Roemmele,¹ Peter Tran,¹ Yuankui Zhang,¹

Department of Chemistry and Biochemistry, The University of Lethbridge, Lethbridge, AB Canada

T1K 3M4 and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

Electronic Supplementary Information

¹ University of Lethbridge (boere@uleth.ca; +1-403-329-2045; Fax +1-403-329-2057 boere@uleth.ca

² Monash University (Alan.Bond@sci.monash.edu.au; +61 3 9905 1338; Fax +61 3 9905 4597)

Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and Table S1. Interational de la Racherche Scientifique 2007 Table S1. Interatomic distances [A] and angles [°] for Dipp₃P and Dipp₃P^{+•} from X-ray and Computation¹

Dimension	Experiment C ₃ Dipp ₃ P	<i>C</i> ₃ in B3LYP/6- 31G(d)	D ₃ in B3LYP/6- 31G(d)	<i>C</i> ₃ in HF6/6- 31G(d)	[Dipp ₃ P] ⁺ in UHF6/6- 31G(d)
P-C1	1.8507(16)	1.8781	1.8142	1.8777	1.8353
C1-C6	1.418(2)	1.4236	1.4272	1.4122	1.4164
C1-C2	1.425(2)	1.4310		1.4221	1.4187
C2-C3	1.388(3)	1.3988	1.3980	1.3877	1.3964
C2-C7	1.517(3)	1.5348	1.5236	1.5354	1.5301
C3-C4	1.395(3)	1.3901	1.3945	1.3793	1.3843
C4-C5	1.368(4)	1.3869		1.3748	1.3852
C5-C6	1.403(3)	1.4034		1.3936	1.3962
C6-C10	1.514(3)	1.5291		1.5288	1.5273
C7-C9	1.531(3)	1.5412	1.5362	1.5354	1.5373
C7-C8	1.531(3)	1.5410	1.5451	1.5373	1.5362
C10-C12	1.529(3)	1.5405		1.5352	1.5365
C10-C11	1.531(3)	1.5441		1.5396	1.5378
P oop of C1 \times 3 ²	0.539	0.536	0	0.531	0.193
P oop C2-C3-C5-C6 ³	0.430	0.434	0	0.424	0.060
C1#1 P C1	111 88(5)	1122	120.0	1123	118.0
C1#1-P-C1	111.00(3) 112.00(16)	112.2	120.0	112.5	110.9
C0-C1-C2	110.90(10) 127.17(12)	110.0	121.4	110.3	121.5
$C_0 - C_1 - P$	127.17(13) 112.10(12)	120.0	110.20	127.2	122.3
C_2 - C_1 -P	113.10(12) 110.67(17)	115.4	119.29	115.4	110.2
$C_{3}^{2} C_{2}^{2} C_{7}^{2}$	119.0/(17) 117.59(17)	119.3	11/.0	119.0	117.9
$C_3 - C_2 - C_7$	117.30(17) 122.75(15)	110.8	124.3	110.5	11/.2
C1-C2-C7	122.75(15) 121.0(2)	123.7	121.4	124.1	124.9
C_2 - C_3 - C_4	121.0(2) 110.51(10)	121.5	120.1	121.5	121.4
C_3 - C_4 - C_5	119.31(19) 122.0(2)	119.1		119.2	120.0
C4-C5-C6	122.0(2)	121.9		121.8	121.0
C_{5}	118.8(2) 117.42(10)	119.1		119.5	11/./
C_{3}	117.42(19) 122.75(17)	110.2		115.7	11/.4
C1-C0-C10	123.75(17)	124.7	112 (124.9	124.8
$C_2 - C_7 - C_9$	110.48(18)	110.8	112.6	111.0	112.0
$C_2 - C_7 - C_8$	111.8/(19)	113.1	111.8	113.1	111.8
C9-C7-C8	110.9(2)	110.5	110.8	110.3	110./
C0-C10-C12	112.4(2)	112.6		112.0	111.0
	111.2(2)	111.6		111./	112.3
C12-C10-C11	109.9(2)	109.8		109.5	110.2

¹ Symmetry transformation used to generate equivalent atoms: #1 -x+y-1,-x-1,z. Atom numbering scheme, see following page.
² Plane of the three *ispo* C atoms of the aryl rings.
³ Plane of the four *ortho* and *meta* C atoms of the aryl ring.

Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and **Table S2**. Table of electronic Spectra of Dipp₃P, Dipp₃P^{+•} and Ph₃P analogues^a

Compound	Conditions	λ_1	λ_2	λ_3	Luminesce nce	Stokes Shift kJ/mol
Dipp ₃ P	hexanes	205 (11.4)	254(8.7)	326(9.3)	503	129
Dipp ₃ P	ethanol ^b	212	252	325	516	136
Dipp ₃ P	CH_2Cl_2		255(3.95)	327(4.01)		
Ph ₃ P	cyclohexane			260	445	201
Ph ₃ P	ethanol			264	500	225
		λ_1	λ_2	λ_3	λ_4	λ_5
Dipp ₃ P ^{+•} PF ₆ ⁻	CH_2Cl_2	251 (3.99)	281 (3.89) sh	285 (3.91)	296 (3.78)	341 (3.49) sh
		λ_6	λ_7	λ_8	λ_9	
		357 (3.84)	373 (4.04)	456 (3.29) sh	498 (3.31)	
		λ_1		λ_2	λ_3	
PPh ₃ ^{+•}	flash photolysis on Vycor	330		345	438	
PPh ₃ ^{+•}	50:50 EtOH/H ₂ O ^c	330		320		

^{*a*} Data reported as λ_{max} (nm) with $\log|\varepsilon|$ in brackets. ^{*b*} Saturated solution, $\log|\varepsilon|$ not determined. ^{*c*} Joschek H. I.; Grossweiner, L. I. *J. Am. Chem. Soc.* **1966**, 88, 3261-3268.

Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and

Table S3. Table of hic constants for [Dipp3⁺]^{+•} from UB3LYP/6-31G(d) calculations.¹

Atom/Group	Calc'd Spin Density	Calc'd B3LYP hfc $(mT)^2$
Р	0.844	19.2
C1	-0.146	-0.22
C2	0.12	0.35
C3	-0.054	-0.33
HC3	0.002	0.03
C4	0.112	0.14
HC4	-0.005	-0.08
C5	-0.043	-0.03
HC5	0.005	0.29
C6	0.122	0.57
C7	0.041	0.19
HC7	-0.02	0.19
C8	-0.003	-0.01
H₃C8	0.008	0.07
C9	0.007	0.09
H₃C9	0.004	0.03
C10	0.003	0.04
HC10	-0.008	0.01
C11	0.005	0.06
H₃C11	0.001	0
C12	0.001	0.01
H₃C12	0.002	0.19

¹ Atom numbering scheme is that used in the crystallographic diagram, reproduced below (view is from above the C_3P pyramid). ² Boldface numbers indicate isotopes with high abundance (¹H and ³¹P).

Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and Table S4. Summary of Cyclic Voltammetry Data obtained for oxidation of Dipp₃P

Solvent	[M]	Electrode	v / mV s⁻¹	E°_{f} / V a	ΔE_{p} /mV	I _p ^{ox} /μΑ	I _p ^{red} /μΑ	Ip ^{red} /Ip ^{ox}
DCM ^b	0.558	Pt (1.6 mm)	50	0.08	100	2.11	-2.12	1.00
			100	0.09	103	2.78	-2.79	1.00
			400	0.07	158	4.79	-4.99	1.04
			800	0.08	195	6.25	-6.36	1.02
	0.558	GC (3 mm)	50	0.07	102	7.22	-7.04	0.98
			100	0.07	120	9.90	-9.60	0.97
			200	0.07	144	13.44	-12.60	0.94
			400	0.08	179	16.78	-15.88	0.95
			800	0.08	219	23.30	-21.60	0.93
ACN ^b	0.10	Pt (1.6 mm)	50	0.17	79	0.36	-0.35	0.96
			100	0.18	87	0.49	-0.49	1.00
			200	0.18	76	0.75	-0.73	0.98
			400	0.18	73	1.04	-0.90	0.87
			800	0.18	86	1.31	-1.24	0.95
			1200	0.18	95	1.47	-1.47	1.00
			4000	0.18	138	2.93	-2.89	0.99
	0.10	GC (3 mm)	50	0.17	70	1.28	-1.05	0.82
			100	0.17	68	2.03	-1.65	0.81
			200	0.16	71	2.54	-2.27	0.89
			400	0.16	74	3.56	-2.98	0.84
			800	0.16	83	4.96	-4.30	0.87
	0.10	Pt (11 μm)	20	0.16 [°]	71 ^d	0.26 ^e		
			50	0.17 ^c	74 ^d	0.25 ^e		
			100	0.17 ^c	85 ^d	0.27 ^e		
		GC (11 µm)	50	0.22 ^c	116 ^d	0.21 ^{<i>e</i>}		

^{*a*} E_{f}° (V vs Fc⁺/Fc couple), ^{*b*} Containing 0.1 M ^{*n*}Bu₄PF₆ at 295 K. ^{*c*} Half-wave potentials ^{*d*} $|E_{3/4} - E_{1/4}|$ ^{*e*} limiting current at microelectrodes in nA.

This journal is (c) The Royal Society of Chemistry and

Table S. Diffusion Coefficient Values for Dipp₃P obtained by different techniques

RDE ^a	Electrode	$D / 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	RPM	
CH ₃ CN	Pt	1.18	1000	
CH ₃ CN	Pt	1.16	2000	
CH ₃ CN	Pt	1.09	3000	
CH ₃ CN	GC	1.15	2000	
CH ₃ CN	GC	1.14	3000	
CH_2Cl_2	GC	1.03	500	
CH_2Cl_2	GC	1.05	1000	
CH_2Cl_2	GC	1.05	2000	
CH_2Cl_2	GC	1.04	3000	
CV^{b}	Electrode	$D / 10^{-5} \text{ cm}^2 \text{ s}^{-1}$		
CH ₃ CN	Pt	0.82		
CH ₃ CN	GCE	0.87		
CH_2Cl_2	Pt	0.93		
CH_2Cl_2	GCE	1.19		
CH_2Cl_2	Au	0.98		
$I_{\rm SS}{}^c$	Electrode	$D / 10^{-5} \text{ cm}^2 \text{ s}^{-1}$	$\nu/\text{ mV s}^{-1}$	
CH ₃ CN	Pt (11 μm)	1.22	20	
		1.18	50	
CH ₃ CN	GC(11 µm)	1.10	50	
	/			

^{*a*} RDE = rotating disk electrode 0.1 M n Bu₄NPF₆ electrolyte present; D values calculated from Levich equation.⁴¹

^b By fitting to the Randles-Sevcik equation 0.1 M ⁿBu₄NPF₆ electrolyte present.⁴¹

^c Using limiting current with microelectrodes of indicated diameter, 0.1 M ⁿBu₄NPF₆ electrolyte present, assuming steady-state conditions and equations.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique 2007 **Table S6.** Dependence of E_f for the $[Dipp_3P]^{+/0}$ process in CH₂Cl₂ on concentration and

^{*n*}Bu₄NPF₆ electrolyte concentration. ^{*a*}

[Bu ₄ NPF ₆] / M	R _{mes} / ohm	[Dipp₃P] / mM	E_{f}° / V (vs. Fc ⁺ /Fc)
0.511	2150	0.497	0.09
0.051	3160	0.519	0.07
0.511	1950	7.000	0.08
0.051	3160	2.756	0.07
a Data altaina	d at a CC al	astroda at a saa	a moto of 100 moV a^{-1}

^{*u*} Data obtained at a GC electrode at a scan rate of 100 mV s⁻¹

Table S7. Dependence of cyclic voltammetric data for oxidation of Dipp₃P on concentration.^{*a*}

Figure S1. SS ³¹P NMR spectrum in a MAS probe of Dipp₃P without spinning and with cross polarization and ¹H decoupling. The $\Delta v_{\frac{1}{2}}$ is 4.4 kHz.

Figure S3¹E Vring Plots for the DNMR measurements of Dipp₃P from the $\Delta v_{\frac{1}{2}}$ analysis for ¹³C and ¹H data, respectively, for the isopropyl methyl groups. Experimental data are from the downfield (solid circles) and upfield (open circles) methyl carbon resonances. Lines are linear regression fits.

Figure S4 Eyring Plots for the DNMR measurements of Dipp₃P from the LSA analysis for ¹³C and ¹H data, respectively, for the isopropyl methyl groups. Experimental data are from the downfield (solid circles) and upfield (open circles) methyl carbon resonances. Lines are linear regression fits.

This journal is (c) The Royal Society of Chemistry and

Figure SS Summary of the Eyring Plots for the DNMR measurements of Dipp₃P for ¹³C and ¹H data, respectively, for the isopropyl methyl groups. Experimental data are all from the downfield methyl carbon resonances, as follows: (solid circles) LSA in ¹³C; (solid triangles) LSA in ¹H; (open circles) $\Delta v_{\frac{1}{2}}$ analysis in ¹³C; (open triangles) $\Delta v_{\frac{1}{2}}$ analysis in ¹⁴H.

Figure S6 RDE simulated and experimental voltammograms for Dipp₃P (8.85 mM) in CH₂Cl₂ (0.5M ^{*n*}Bu₄NPF₆) at a GC electrode. (a) RDE of Dipp₃P before bulk electrolysis and best fit simulation $E_{f}^{\circ} = 0.08 \text{ V}$; $\alpha = 0.5$; $k_s = 0.01 \text{ cm}^2 \text{ s}^{-1}$; $D_R = D_O = 1.06 \times 10^{-5} \text{ cm s}^{-1}$; [Dipp₃P] = 8.85 mM; kinetic viscosity of CH₂Cl₂ = 0.0033 cm² s⁻¹; electrode radius = 0.15 cm; R_u = 1000 ohm). (b) [Dipp₃P]^{+•} generated in bulk electrolysis, experimental and best fit parameters: R_u = 700 ohm (all other parameters as in a). R_u has decreased from 1000 ohm to 700 ohm because Dipp₃P⁺ provides additional electrolyte. Potentials vs. Fc^{+/0}.

Figure S7^{tre} National de la Recherche Scientifique 2007 Kohn-Sham total spin density surface plot of $[Dipp_3P]^+$ from a UB3LYP/6-31G(d) calculation. The view is down the 3-fold axis with the P atom in the centre, where most of the spin density is concentrated.

Reproduced from: Gilheany, D. G. Chem. Rev. 1994, 94, 1339-1374.