Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007 **Regioselectivity of the Coupling Between Radicals and Ambident Nucleophiles. A Theoretical Study.**

María T. Baumgartner,*^{*a*} Guillermo A. Blanco and Adriana B. Pierini

INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba. Ciudad Universitaria. 5000 Córdoba. Argentina.

Supplementary information

Figure S1: AM1 conformational search for RAs formed by reaction of phenyl radical (10) at	
the C_1 and O sites of anion 2 .	S2
Table S1: ΔE_{solv} (kcal/mol) in methanol for the coupling of aromatic and alipahtic	
radicals with the nucleophiles of Chart 1.	S3
Figure S2: Gas phase B3LYP electrostatic potential and spin distribution for radical anions and	
transition sates formed by reaction of phenyl radical at the C_1 and O sites of anion 2.	S4
Figure S3: Charge distribution for the radical anions formed by reaction of phenyl radical	
at hetereatom and C positions of anions 1, 5 and 8.	S5
Table S2: AM1 SOMO for RAs	S6
Figure S4: Gas phase B3LYP electrostatic potential and spin distribution for radical anions and	
transition sates formed by reaction of radical 11 at the C_1 and O sites of anion 1.	S7
Figure S5: Gas phase B3LYP electrostatic potential and spin distribution for radical anions and	
transition sates formed by reaction of radical 12 at the C_1 and O sites of anion 1 .	S 8
Table S3: Energy differences between relevant points of the potential energy surface (PES)	
for the reaction of phenyl radicals (10) with anion 2 calculated with different bases set.	S9

Figure S1: AM1 conformational search for RAs formed by reaction of phenyl radical (10) at the C_1 and O sites of anion 2.

Table S1: ΔE_{solv} (kcal/mol) in methanol for the coupling of aromatic and aliphatic radicals with the nucleophiles of Chart 1.

Anion	Posit	ΔE^a with 10			ΔE with	n 11 ^a	ΔE with 12^a			
		React ^b	RA	TS	React ^c	RA	TS	React ^d	RA	TS
1	C ₂				-150.28	-119.89	-107.12	-146.15	-120.47	-111.66
	0					-129.06	-106.66		-129.42	-105.74
2	C_1	-130.10	-111.17	-111.50						
	0		-101.95	-103.07						
6	C ₅	-139.80	-132.78	-125.81						
	Ν		-119.40	-112.83						
7	C_2	-142.98	-123.40	-116.87						
	C ₃		-122.15	-117.61						
	Ν		-106.61	-111.98						
8	C_2				-159.72	-133.38	-109.78			
	C_4					-130.97	-112.47			
	Ν					-133.46	-120.61			

^{*a*} ΔE (kcal/mol) = Energies of RA (TS) in solvent - Energies of RA (TS) in gas phase.

- ^{*b*} ΔE phenyl radical **10** = 6.56 kcal/mol.
- ^{*c*} ΔE 4-nitrobezyl radical **11** = 19.09 kcal/mol.

^{*d*} ΔE 4-nitrophenyl radical **12** = - 14.95 kcal/mol.

Figure S2: Gas phase B3LYP electrostatic potential (from red (negative) to blue (positive)) and spin distribution for radical anions and transition states formed by reaction of phenyl radical (10) at the C_1 and O sites of anion 2.

Electrostatic potential

Spin distribution

Figure S3: Charge distribution for the radical anions formed by reaction of phenyl radical (10) at hetereatom and C positions of anions 1, 5 and 8.

Table S2: AM1 SOMO for RAs

Anion	Position ^a	RAs of 10	RAs of 11
1	C ₂	-2.175951	-2.674606
	0	-1.384733	-2.694593
3	C_1	-2.449492	-2.659505
	C_3	-2.808059	-3.047611
	0	-1.963007	-2.746072
5	C_5	-2.781553	-3.003690
	Ν	-2.328421	-3.121256
8	C ₂	-1.770456	-2.523271
	C_4	-1.876079	-2.754480
	Ν	-1.612966	-2.913055
9	C ₂	-2.764304	-2.991464
	Ν	-1.933987	-3.000483

Figure S4: Gas phase B3LYP electrostatic potential (from red (negative) to blue (positive)) and spin distribution for radical anions and transition sates formed by reaction of radical **11** at the C_1 and O sites of anion **1**.

Electrostatic potential

Spin distribution

Figure S5: Gas phase B3LYP electrostatic potential (from red (negative) to blue (positive)) and spin distribution for radical anions and transition sates formed by reaction of radical 12 at the C_1 and O sites of anion 1.

Electrostatic potential

Spin distribution

Table S3: Energy differences between relevant points of the potential energy surface (PES) for the reaction of phenyl radicals (10) with anion 2 calculated with different bases set.

Bases set	C ₁ -subs	stitution	O-substitution			
	${\rm E_a}^a$	$\Delta E_r^{\ b}$	${\rm E_a}^a$	$\Delta E_r^{\ b}$	ΔE_a	$\Delta\Delta E_r$
6-31 G*	-8.01	-39.58	-1.66	-24.84	6.35	14.74
6-31+G*	-4.96	-36.34	2.94	-19.91	7.90	16.99
6-31 G*	10.57	-20.61	25.36	3.31	14.79	23.91
Continuum solvent ^c						
6-31+G*	6.15	-24.74	27.66	17.21	21.51	41.95
Continuum solvent ^c						

 ${}^{a}E_{a}$ (kcal/mol) = energy difference between transition states and reactants (anion + phenyl radical). ${}^{b}\Delta E_{r}$ (kcal/mol) = reaction energy (energy difference between radical anion of product and reactants). ^cContinuum solvent model for methanol, without geometry optimization. Differences in total solution phase energies informed.