Large Photoactive Supramolecular Ensembles Prepared from C₆₀-Pyridine Substrates and Multi-Zn(II)-Porphyrin Receptors

Ali Trabolsi,^{*a*} Maxence Urbani,^{*b,c*} Juan Luis Delgado,^{*c*} Fettah Ajamaa,^{*c*} Mourad Elhabiri,^{*a*} Nathalie Solladié,^{**b*} Jean-François Nierengarten,^{**c*} and Anne-Marie Albrecht-Gary^{**a*}

^{*a*} Laboratoire de Physico-Chimie Bioinorganique, ULP-CNRS (UMR 7177), Institut de Chimie, ECPM,, 25 rue Becquerel, 67200 Strasbourg, France. Fax: 33 (0) 3 90 24 26 39; Tel: 33 (0) 3 90 24 26 38; E-mail: amalbre@chimie.u-strasbg.fr

^b Groupe de Synthèse de Systèmes Porphyriniques, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Fax: 33 (0) 5 61 55 30 03; Tel: 33 (0) 5 61 33 32 02; E-mail: nathalie.solladie@lcc-toulouse.fr

^c Groupe de Chimie des Fullerènes et des Systèmes Conjugués, Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Fax: 33 (0) 5 61 55 30 03; Tel: 33 (0) 5 61 33 31 00; E-mail: jfnierengarten@lcc-toulouse.fr

Supporting Information

(0)

a) UV-visible absorption spectrophotometric titration of LZn with Py. l = 1 cm; 1) [LZn]_{tot} = 1.79×10^{-6} M; 2) [(Py)]_{tot}/[LZn]_{tot} = 363. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of LZn and [(LZn).(Py)]. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(a)

a) Luminescence spectrophotometric titration of LZn with Py. $\lambda_{exc} = 557$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) [LZn]_{tot} = 1.79 × 10⁻⁶ M; 2) [(Py)]_{tot}/[LZn]_{tot} = 314. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Relative recalculated fluorescence spectra of LZn and [(LZn).(Py)]. Solvent: CH₂Cl₂; T = 25.0(2) °C.

LZn + S1

(a)

a) UV-visible absorption spectrophotometric titration of LZn with S1. l = 0.2 cm; 1) [LZn]_{tot} = 1.85×10^{-4} M; 2) [S1]_{tot}/[LZn]_{tot} = 6.8. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of S1, LZn and [(LZn).(S1)] complex. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(b)

a) Luminescence spectrophotometric titration of **LZn** with **S1**. $\lambda_{exc} = 559$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) [**LZn**]_{tot} = 1.79 × 10⁻⁶ M; 2) [**S1**]_{tot}/[**LZn**]_{tot} = 63. Solvent: CH₂Cl₂; T = 25.0(2) °C.

b) Variation of F^0/F at 600 nm versus the concentration of **S1**. The trend line is the result of the non linear least-square fit of the experimental data according to $F_0/F = (1 + K_{SV}[S1])\exp(K_1[S1])$.

LZn + S2

(a)

a) UV-visible absorption spectrophotometric titration of LZn with S2. l = 0.2 cm; 1) [LZn]_{tot} = 5.82×10^{-5} M; 2) [S2]_{tot}/[LZn]_{tot} = 7.4. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of S2, LZn and [(LZn).(S2)]. Solvent: CH₂Cl₂; T = 25.0(2)

°C.

(b)

a) Luminescence spectrophotometric titration of LZn with S2. $\lambda_{exc} = 557$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) [LZn]_{tot} = 1.90 × 10⁻⁶ M; 2) [S2]_{tot}/[LZn]_{tot} = 48. Solvent: CH₂Cl₂; T = 25.0(2) °C.

b) Variation of F^0/F at 600 nm versus the concentration of **S2**. The trend line is the result of the non linear least-square fit of the experimental data according to $F_0/F = (1 + K_{\rm SV}[S2])\exp(K_1[S2])$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

 $LZn_2 + Py$

(a)

a) UV-visible absorption spectrophotometric titration of \mathbf{LZn}_2 with \mathbf{Py} . l = 1 cm; 1) $[\mathbf{LZn}_2]_{tot} = 1.13 \times 10^{-6}$ M; 2) $[(\mathbf{Py})]_{tot}/[\mathbf{LZn}_2]_{tot} = 863$. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of \mathbf{LZn}_2 , $[(\mathbf{LZn}_2).(\mathbf{Py})]$ and $[(\mathbf{LZn}_2).(\mathbf{Py})_2]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(a)

(b)

a) Luminescence spectrophotometric titration of \mathbf{LZn}_2 with \mathbf{Py} . $\lambda_{exc} = 557$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) $[\mathbf{LZn}_2]_{tot} = 1.13 \times 10^{-6}$ M; 2) $[(\mathbf{Py})]_{tot}/[\mathbf{LZn}_2]_{tot} = 531$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

b) Relative recalculated fluorescence spectra of LZn_2 , $[(LZn_2).(Py)]$ and $[(LZn_2).(Py)_2]$. Solvent: CH_2Cl_2 ; T = 25.0(2) °C.

 $LZn_2 + S1$

(a)

a) UV-visible absorption spectrophotometric titration of LZn_2 with S1. l = 0.2 cm; 1) $[LZn_2]_{tot} = 5.65 \times 10^{-5}$ M; 2) $[S1]_{tot}/[LZn_2]_{tot} = 5$. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of S1, LZn_2 and $[(LZn_2).(S1)_2]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(a)

(b)

a) Luminescence spectrophotometric titration of \mathbf{LZn}_2 with S1. $\lambda_{exc} = 559$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) $[\mathbf{LZn}_2]_{tot} = 1.13 \times 10^{-6}$ M; 2) $[S1]_{tot}/[\mathbf{LZn}^2]_{tot} = 27.2$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

b) Variation of F^0/F at 600 nm versus the concentration of **S1**. The trend line is the result of the non linear least-square fit of the experimental data according to $(F_0/F) / (1 + K_{SV}[S1]) = (1 + K_1[S1] + K_1K_2[S1]^2)$. The absorption spectra of fullerene have been subtracted. Solvent: CH₂Cl₂; T = 25.0(2) °C.

 $LZn_2 + S2$

(a)

a) UV-visible absorption spectrophotometric titration of \mathbf{LZn}_2 with S2. l = 0.2 cm; 1) $[\mathbf{LZn}_2]_{tot} = 5.65 \times 10^{-5}$ M; 2) $[\mathbf{S2}]_{tot}/[\mathbf{LZn}_2]_{tot} = 5.5$. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Absorption electronic spectra of \mathbf{LZn}_2 and $[(\mathbf{LZn}_2).(\mathbf{S2})_2]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(b)

a) Luminescence spectrophotometric titration of LZn_2 with S2. $\lambda_{exc} = 557$ nm; emission and excitation slit widths 15 nm and 20 nm respectively; 1) $[LZn_2]_{tot} = 1.16 \times 10^{-6}$ M; 2) $[S2]_{tot}/[LZn_2]_{tot} = 46.8$. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Variation of F^0/F at 600 nm versus the concentration of S2. The trend line is the result of

b) Variation of F'/F at 600 nm versus the concentration of S2. The trend line is the result of the non linear least-square fit of the experimental data according to $(F_0/F) / (1 + K_{SV}[S2]) = (1 + K_1[S2] + K_1K_2[S2]^2)$. The absorption spectra of fullerene have been subtracted. Solvent: CH₂Cl₂; T = 25.0(2) °C.

 $LZn_6 + Py$

(a)

(c)

a,b) UV-visible absorption spectrophotometric titration of \mathbf{LZn}_6 with \mathbf{Py} . l = 0.5 cm; 1) $[\mathbf{LZn}_6]_{tot} = 1.17 \times 10^{-6}$ M; 2) $[\mathbf{Py}]_{tot}/[\mathbf{LZn}_6]_{tot} = 735$. Solvent: CH_2Cl_2 ; T = 25.0(2) °C. c) Absorption electronic spectra of \mathbf{LZn}_6 and $[(\mathbf{LZn}_6).(\mathbf{Py})_6]$. Solvent: CH_2Cl_2 ; T = 25.0(2) °C.

Luminescence titration of \mathbf{LZn}_6 with \mathbf{Py} . $\lambda_{ex} = 558$ nm; emission and excitation slit widths 15 and 20 nm respectively; 1) [\mathbf{LZn}_6]_{tot} = 1.17 × 10⁻⁶ M; 2) [\mathbf{Py}]/[\mathbf{LZn}_6]_{tot} = 312. Solvent: CH₂Cl₂; T = 25.0(2) °C.

 $LZn_6 + S1$

(a)

(b)

(c)

a,b) UV-visible absorption spectrophotometric titration of \mathbf{LZn}_6 with S1. l = 0.2 cm; 1) $[\mathbf{LZn}_6]_{tot} = 2.93 \times 10^{-6}$ M; 2) $[S1]_{tot}/[\mathbf{LZn}_6]_{tot} = 108$. Solvent: CH₂Cl₂; T = 25.0(2) °C. c) Absorption electronic spectra of \mathbf{LZn}_6 and $[(\mathbf{LZn}_6).(S1)_6]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(a)

(b)

a) Luminescence titration of LZn_6 with S1. $\lambda_{ex} = 428$ nm; emission and excitation slit widths 15 and 20 nm respectively; 1) $[LZn_6]_{tot} = 4.91 \times 10^{-8} \text{ M}$; 2) $[S1]/[LZn_6]_{tot} = 220$. Solvent: CH₂Cl₂; T = 25.0(2) °C. b) Variation of F^0/F at 600 nm versus the concentration of S1. The trend line is the result of

b) Variation of F^0/F at 600 nm versus the concentration of **S1**. The trend line is the result of the linear least-square fit of the experimental data according to $F_0/F = 1 + K^*[S1]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

 $LZn_6 + S2$

(a)

⁽c)

a,b) UV-visible absorption spectrophotometric titration of \mathbf{LZn}_6 with S2. l = 0.2 cm; 1) $[\mathbf{LZn}_6]_{tot} = 3.04 \times 10^{-6}$ M; 2) $[\mathbf{S2}]_{tot}/[\mathbf{LZn}_6]_{tot} = 24.5$. Solvent: CH₂Cl₂; T = 25.0(2) °C. c) Absorption electronic spectra of \mathbf{LZn}_6 and $[(\mathbf{LZn}_6).(\mathbf{S2})_6]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

(a)

(b)

a) Luminescence titration of LZn_6 with S2. $\lambda_{ex} = 428$ nm; emission and excitation slit widths 15 and 20 nm respectively; 1) $[LZn_6]_{tot} = 4.91 \times 10^{-8}$ M; 2) $[S2]/[LZn_6]_{tot} = 277$. Solvent: CH₂Cl₂; T = 25.0(2) °C.

b) Variation of F^0/F at 600 nm versus the concentration of **S2**. The trend line is the result of the linear least-square fit of the experimental data according to $F_0/F = 1 + K^*[S2]$. Solvent: CH₂Cl₂; T = 25.0(2) °C.