Anion triggered electropolymerisation in ferrocene functionalised *ortho*-phenylenediamine based receptors

Marta Arroyo, Peter R. Birkin, Philip A. Gale,* Sergio E. García-Garrido and Mark E. Light School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ.

Fax: +44 23 8059 6805; Tel: +44 23 8059 3332; E-mail: <u>Philip.gale@soton.ac.uk</u>

Supplementary information

Figure S1¹H NMR spectrum of compound 1 in DMSO-d₆

Figure S2 $^{13}C\{^1H\}$ NMR spectrum of compound 1 in DMSO-d_6

Figure S3 ¹H NMR spectrum of compound 2 in DMSO-d₆

Figure S4 $^{13}C\{^1H\}$ NMR spectrum of compound 2 in DMSO-d_6

Figure S5 ¹H NMR spectrum of compound 3 in DMSO-d₆

Figure S6 $^{13}C{^{1}H}$ NMR spectrum of compound 3 in DMSO-d₆

Figure S7¹H NMR spectrum of compound 4 in DMSO-d₆

Figure S8¹³C{¹H} NMR spectrum of compound **4** in DMSO-d₆

Figure S9 ¹H NMR spectrum of compound 5 in DMSO-d₆

Figure S10 ${}^{13}C{}^{1}H$ NMR spectrum of compound 5 in DMSO-d₆

Figure S11 ¹H NMR spectrum of compound 6 in DMSO-d₆

Figure S12 ${}^{13}C{}^{1}H$ NMR spectrum of compound 6 in DMSO-d₆

Figure S13 ¹H NMR titration curve of 1 with tetrabutylammonium acetate.

Figure S14 ¹H NMR titration curve of 1 with tetrabutylammonium benzoate.

Figure S15 ¹H NMR titration curve of 1 with tetrabutylammonium dihydrogenphosphate.

Figure S16 ¹H NMR titration curve of 1 with tetrabutylammonium chloride.

Figure S17 ¹H NMR titration curve of 2 with tetrabutylammonium acetate.

Figure S18 ¹H NMR titration curve of 2 with tetrabutylammonium benzoate.

Figure S19¹H NMR titration curve of 2 with tetrabutylammonium dihydrogenphosphate.

Figure S20 ¹H NMR titration curve of 2 with tetrabutylammonium chloride.

Figure S21 ¹H NMR titration curve of 3 with tetrabutylammonium acetate.

Figure S22 ¹H NMR titration curve of 3 with tetrabutylammonium benzoate.

Figure S23 ¹H NMR titration curve of 3 with tetrabutylammonium dihydrogenphosphate.

Figure S24 ¹H NMR titration curve of 3 with tetrabutylammonium chloride.

Figure S25 ¹H NMR titration curve of 4 with tetrabutylammonium acetate.

Figure S26 ¹H NMR titration curve of 4 with tetrabutylammonium benzoate.

Figure S27 ¹H NMR titration curve of 4 with tetrabutylammonium dihydrogenphosphate.

Figure S28 ¹H NMR titration curve of 4 with tetrabutylammonium chloride.

Figure S29 ¹H NMR titration curve of **5** with tetrabutylammonium acetate in DMSO- $d_6/0.5\%$ H₂O.

Figure S30 ¹H NMR titration curve of **5** with tetrabutylammonium benzoate in DMSO- $d_6/0.5\%$ H₂O.

Figure S31 ¹H NMR titration curve of 5 with tetrabutylammonium dihydrogenphosphate in DMSO- $d_6/0.5\%$ H₂O.

Figure S32 ¹H NMR titration curve of **5** with tetrabutylammonium chloride in DMSO- $d_6/0.5\%$ H₂O.

Figure S33 ¹H NMR titration curve of **5** with tetrabutylammonium acetate in DMSO- $d_6/5.0\%$ H₂O.

Figure S34 ¹H NMR titration curve of **5** with tetrabutylammonium benzoate in DMSO- $d_6/5.0\%$ H₂O.

Figure S35 ¹H NMR titration curve of 5 with tetrabutylammonium dihydrogenphosphate in DMSO- $d_6/5.0\%$ H₂O.

Figure S36 ¹H NMR titration curve of 6 with tetrabutylammonium acetate.

Figure S37 ¹H NMR titration curve of 6 with tetrabutylammonium benzoate.

Figure S38 ¹H NMR titration curve of 6 with tetrabutylammonium dihydrogenphosphate.

Figure S39 ¹H NMR titration curve of 6 with tetrabutylammonium chloride.

Figure S40 Cyclic voltammetric data gathered for compound (3) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1—, 2:1— and 5:1— respectively). The electrolyte consisted of 0.1 mol dm⁻³ TBATFP in (95% CH₃CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s⁻¹ under anaerobic conditions at 20-23°C.

Figure S41 Cyclic voltammetric data gathered for compound (4) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1—, 2:1— and 5:1— respectively). The electrolyte consisted of 0.1 mol dm⁻³ TBATFP in (95% CH₃CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s⁻¹ under anaerobic conditions at 20-23°C.

Figure S42 Cyclic voltammetric data gathered for compound (5) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1—, 2:1— and 5:1— respectively). The electrolyte consisted of 0.1 mol dm⁻³ TBATFP in (95% CH₃CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s⁻¹ under anaerobic conditions at 20-23°C.

Figure S43 Cyclic voltammetric data gathered for compound (6) at a 3 mm diameter glassy carbon disk as a function of acetate to ferrocene receptor concentration ratio (0:1—, 2:1— and 5:1— respectively). The electrolyte consisted of 0.1 mol dm⁻³ TBATFP in (95% CH₃CN/5% DMSO). The initial ferrocene derivative concentration was 1 mM. All voltammetry was recorded at 20 mV s⁻¹ under anaerobic conditions at 20-23°C.