Supplementary material

Modulation and Binding Properties of Extended Glycoluril Molecular Clips

Prasad Polavarapu,^a Helena Melander,^a Vratislav Langer,^b Adolf Gogoll,^{a*} Helena Grennberg^{a,*}

a) Dept. of Biochemistry and Organic Chemistry, Uppsala University, Box 576, S-75123
Uppsala, Sweden
b) Environmental Inorganic Chemistry, Dept. of Chemical and Biological Engineering, Chalmers University of Technology, S-412 96 Gothenburg, Sweden

*To whom correspondence should be addressed. Email: Adolf.Gogoll@biorg.uu.se, Helena.Grennberg@biorg.uu.se

1. NMR Titrations of clip 1	
(a) Clip 1 with H ₂ O.	2
(b) Clip 1 with resorcinol.	
Clip 1 – resorcinol precipitate	5
(c) Clip 1 with AgClO ₄	6
(d) Clip 1 with NH ₄ PF ₆	
(e) Clip 1 with Trifluoroacetic acid (TFA).	16
2. NMR Titrations of clip 2	17
(a) Clip 2 with resorcinol.	17
(b) Clip 2 with AgClO ₄ .	17
(c) Clip 2 with NH ₄ PF ₆	19
3. NMR Titrations of clip 3	
(a) Clip 3 with H ₂ O.	20
(c) Clip 3 with AgClO ₄	
4. Overview charts – Chemical shift changes	
(a) Clips with resorcinol	
(b) Clips with AgClO ₄	
(c) Clips with NH ₄ PF ₆	
6. Inclusion compound [clip 1] [PhNO ₂]	
7. Clip wall distances	
8. Hydrogen bond parameters for clip 1·NH ₄ PF ₆ crystal structure	

1. NMR Titrations of clip 1.

(a) Clip 1 with H₂O.

Figure S1: Temperature dependent ¹H NMR chemical shift changes $\Delta\delta$ (ppb) for clip **1** in the presence of water. Numbers correspond to the chemical shift difference $\Delta\delta$ in ppb when the temperature was varied from 25 °C to -55 °C. ($\Delta\delta = \delta_{-55 \text{ °C}} - \delta_{25 \text{ °C}}$).

Figure S2: ¹H NMR spectra of clip **1** in the presence of water (500 MHz, CDCl₃ solution) recorded at the indicated temperatures. The arrow indicates the position of the water signal.

(b) Clip 1 with resorcinol.

Figure S3: ¹H NMR chemical shift changes $\Delta\delta$ (ppb) for clip 1 and resorcinol. Values for clip 1 correspond to a clip:resorcinol ratio of 1:15.5. Values for resorcinol correspond to a clip>resorcinol ratio of 1:0.68. $\Delta\delta = \delta_{(1+resorcinol)} - \delta_1$ (or $\delta_{(resorcinol)}$).

Figure S4: Chemical shift changes vs. resorcinol concentration for selected protons of clip 1 (CDCl₃ solution, 500 MHz, 25° C). [clip 1] = 0.082 M.

Figure S5: Expansions of ¹H NMR spectra showing resorcinol and aliphatic clip proton signals observed upon titration of a solution of clip **1** with resorcinol (CDCl₃ solution, 500 MHz, 25°C). Molecular ratios of clip **1**:resorcinol are indicated.

Figure S6: ¹H NMR spectrum of collected precipitate obtained from a solution of clip 1 + excess of resorcinol (500 MHz, CDCl₃ solution).

(c) Clip 1 with AgClO₄.

1:Ag+		H _{2a}	H _{2b}	H ₅	H ₆	H ₇	CH ₃	Ph
1:0	δ	3.952	5.840	8.251	7.644	7.927	4.244	7.114
1:0.2	δ	3.954	5.839	8.231	7.630	7.913	4.241	7.120
	Δδ	0.002	0.001	-0.020	-0.014	-0.014	0.003	0.006
1:0.6	δ	3.958	5.835	8.192	7.601	7.885	4.234	7.121
	Δδ	0.006	-0.010	-0.060	-0.043	-0.042	-0.01	0.007
1:0.8	δ	3.959	5.835	8.175	7.589	7.873	4.231	7.122
	Δδ	0.007	-0.010	-0.080	-0.055	-0.054	-0.013	0.008
1:1	δ	3.973	5.830	8.1(br)	7.52(br)	7.82(br)	4.213	7.13
	Δδ	0.021	-0.010	-0.150	-0.124	-0.107	-0.031	0.016
1:1.2	δ	3.995	5.816	small and broad peaks			4.177(br)	7.15(br)
	Δδ	0.043	-0.020	-0.067 0.036			0.036	
1:2	δ	4.018(br)	5.755	No peaks 4.076 7.2			7.2	
	Δδ	0.066	-0.090	-0.168 0.086			0.086	
1:3	δ	-	5.730		4.03			7.21
	Δδ		-0.110		-0.207			0.096
1:4.4	δ	4.120	5.735	4.010 7.22			7.22	
	Δδ	0.168	-0.110				-0.234	0.106
1:7	δ	Very small and broad signals						
1:11	δ	All signals corresponding to 1 disappear						

Table S1: ¹H NMR chemical shift changes for clip **1** upon addition of AgClO₄. $\Delta \delta = \delta_{(1+Ag^+)} - \delta_1$. Solvent CDCl₃:CD₃OD 9:1.

Figure S7: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip 1 for clip:Ag⁺ ratio of 1:1.

Figure S8: Expansion of aromatic region of ¹H NMR spectra with various Ag⁺: clip **1** ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 9:1) (continued from **Error! Reference source not found.**). Aliquots of AgClO₄ solution added to clip **1**, ratios indicated on left hand side of spectra. The dashed line indicates the δ of *para*-Ph protons in the absence of Ag⁺ (continued overleaf).

Figure S9: Expansion of aromatic region of ¹H NMR spectra with various Ag^+ : clip 1 ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 9:1) (continued from previous Figure). Aliquots of AgClO₄ solution added to clip 1, ratios indicated on left hand side of spectra. The vertical scale was increased two times compared to Figures for lower Ag^+ : clip 1 ratios.

Figure S10: Expansion of aliphatic region of ¹H NMR spectra with various Ag^+ : clip **1** ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 9:1). Aliquots of AgClO₄ solution added to clip **1**, ratios indicated on left hand side of spectra. Observe the change of chemical shift as well as broadening of the CH₂ proton oriented towards the outside of the cleft and the methoxy protons starting to change beyond the 1:1 ratio (continued overleaf).

Figure S11: Expansion of the aliphatic region of ¹H NMR spectra with variable Ag⁺: clip **1** ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 9:1) (continued from previous Figure). Aliquots of AgClO₄ solution added to clip **1**, ratios indicated on left hand side of spectra. Observe the change of chemical shift as well as broadening of the CH₂ proton oriented outside of the cleft (H_a) and the methoxy protons starting to change beyond the 1:1 ratio (continued overleaf).

Figure S12: Expansion of the aliphatic region of ¹H NMR spectra with variable Ag^+ : clip 1 ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 9:1) (continued from previous Figure). Aliquots of AgClO₄ solution added to clip 1, ratios indicated on left hand side of spectra.

(d) Clip 1 with NH₄PF₆

Figure S13: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip 1 for clip:NH₄⁺ ratio of 1:68.

1:NH ₄ ⁺		H ₅	H ₆	H_7	Ph
1:0	δ	8.141	7.540	7.831	7.059
1:1.1	δ	8.106	7.513	7.818	7.062
	Δδ	-0.035	-0.027	-0.013	0.003
1:2.3	δ	8.062	7.481	7.801	7.065
	Δδ	-0.079	-0.059	-0.030	0.006
1:3.4	δ	8.016	7.446	7.783	7.069
	Δδ	-0.125	-0.094	-0.048	0.010
1:5.1	δ	7.991	7.427	7.774	7.070
	Δδ	-0.150	-0.113	-0.057	0.011
1:6.8	δ	7.960	7.404	7.762	7.073
	Δδ	-0.181	-0.136	-0.069	0.014
1:8.5	δ	7.922	7.377	7.748	7.075
	Δδ	-0.219	-0.163	-0.083	0.016
1:10.8	δ	7.901	7.361	7.741	7.077
	Δδ	-0.240	-0.179	-0.090	0.018
1:13.7	δ	7.879	7.346	7.732	7.078
	Δδ	-0.262	-0.194	-0.099	0.019
1:17.1	δ	7.853	7.326	7.722	7.081
	Δδ	-0.288	-0.214	-0.109	0.022
1:22.8	δ	7.810	7.295	7.707	7.084
	Δδ	-0.331	-0.245	-0.124	0.025
1:28.5	δ	7.798	7.286	7.702	7.085
	Δδ	-0.343	-0.254	-0.129	0.026
1:34.2	δ	7.778	7.272	7.695	7.086
	Δδ	-0.363	-0.268	-0.136	0.027
1:39.9	δ	7.766	7.260	7.691	7.088
	Δδ	-0.375	-0.280	-0.140	0.029
1:51.3	δ	7.753	7.260	7.686	7.089
	Δδ	-0.388	-0.280	-0.145	0.030
1:68.3	δ	7.742	7.250	7.684	7.090
	Δδ	-0.399	-0.290	-0.147	0.031

Table S2: ¹H NMR chemical shift changes for clip **1** upon addition of NH_4PF_6 . $\Delta \delta = \delta_{(1+Ag^+)} - \delta_1$. Solvent CDCl₃:CD₃OD 7:3.

Figure S14: ¹H NMR spectra with various clip $1:NH_4^+$ ratios (500 MHz, solvent CDCl₃:MeOHd₄ 7:3). Aliquots of NH₄PF₆ solution added to clip 1, ratios indicated on left hand side of spectra (continued overleaf).

Figure S15: ¹H NMR spectra with various clip $1:NH_4^+$ ratios (500 MHz, solvent CDCl₃:MeOH-d₄ 7:3) (continued from previous Figure). Aliquots of NH_4PF_6 solution added to clip 1, ratios indicated on left hand side of spectra.

Table S3: Survey of guests with clip 1. Chemical shift differences in ppm. Guests are added in more than 10-fold excess to 1 in the same solvent. For signal numbering, see **DOI: 10.1039**/ **b715208f.** $\Delta \delta = \delta_{(1+\text{guest})} - \delta_1$.

Guest, solvent, pK _a ^a	¹ H NMR shift effects observed for clip 1 on addition of guest					
	H-5	H-6	H-7	Ph	CH ₂	OCH ₃
TFA (added to 1 in CDCl ₃ solution)	To lower shi	shifts at clos fts at excess	e to 1:1, to TFA	0.2	-0.15 0.15	-0.2
Aq. ammonia (CDCl ₃) not very miscible	All signals	s to lower ch	emical shifts	5	•	-
Hydroxylamine hydrochloride (CDCl ₃ +CD ₃ OD) low solubility pK _a 5.97	-0.054	-0.044	-0.028	0.003	-0.006 0.003	-0.01
Methoxylamine hydrochloride (CDCl ₃ +CD ₃ OD) pK _a 3.9 in 3:2 dioxane-water	-0.036	-0.026	-0.018	0.002	-0.017 0.002	-0.02
o-benzyl hydroxylamine hydrochloride (CDCl ₃ +CD ₃ OD)	-0.021	-0.007	-0.006	0.007	-0.01 0.005	-0.04
Aniline hydrochloride (CDCl ₃ +CD ₃ OD) pK _a 4.19	-0.025	-0.01	-0.009	0.004	-0.015 0.005	-0.024
Benzylamine hydrochloride (CDCl ₃ +CD ₃ OD) pK _a 9.34	-0.01	-0.005	-0.003	0.001	-0.008 0.001	-0.01
9-aminofluorene·HCl CDCl ₃ +CD ₃ OD 3:1) soluble	-0.074	-0.022	-0.01	0.01	-0.012 0.009	-0.027
DL-Cysteine hydrochloride (CDCl ₃ +CD ₃ OD) very low solubility	-0.02	-0.011	-0.008	0.003	-0.019 0.001	-0.018
Guanidine HCl (CDCl ₃ +CD ₃ OD 3:1) soluble pK_a 13.71	-0.1	-0.076	-0.05	0.005	-0.023 0.012	-0.021
4-guanidinobenzoicacid-4-nitrophenol ester·HCl (CDCl ₃ +CD ₃ OD 3:1) low solubility	-0.026	-0.013	-0.009	0.002	-0.009 0.001	-0.01
L-phenylalanine methylester HCl (CDCl ₃ +CD ₃ OD 3:1) soluble	All signals	s move to lo	wer chemica	l shifts		
L-alanine ethylester HCl (CDCl ₃ +CD ₃ OD 2:1) soluble	All signals	s move to lo	wer chemica	l shifts		
L-Serine ethylester HCl CDCl ₃ +CD ₃ OD 2:1) soluble	All signals	s move to lo	wer chemica	l shifts		
Diethylamine hydrochloride (CDCl ₃)	All signals	s move to lo	wer chemica	l shifts		
Dimethylamine hydrochloride (CDCl ₃) pK _a 15.6 in MeCN	All signals	s move to lo	wer chemica	l shifts		
1-amidinopyrazole HCl (CDCl ₃ +CD ₃ OD 3:1) soluble	All signals	s move to lo	wer chemica	l shifts		
Pyridine hydrochloride (CDCl ₃) pK _a 5.21	All signals	s move to lo	wer chemica	l shifts		
Tetrabutylammonium bromide (CDCl ₃)	All signals	s move to lo	wer chemica	l shifts		
Tetraethylammonium bromide (CDCl ₃)	All signals	s move to lo	wer chemica	l shifts		
Tetramethylammonium bromide (CDCl ₃ +CD ₃ OD) low solubility	All signals	s move to \overline{lo}	wer chemica	l shifts		
Tetramethylammonium chloride (CDCl ₃ +CD ₃ OD) low solubility	All signals	s move to lo	wer chemica	l shifts		

(e) Clip 1 with Trifluoroacetic acid (TFA).

	1		<i>J</i> ,		5	
ratio TFA:clip 1	Δδ-Η5	Δδ-Η7	Δδ-Н6	Δδ-CH-2 _b	Δδ-Ο CH ₃	Δδ-CH- 2_a
15.3	-0.158	-0.046	-0.106	-0.045	-0.134	0.092
21.5	-0.171	-0.046	-0.115	-0.051	-0.155	0.111
30.7	-0.15	-0.024	-0.102	-0.06	-0.175	0.134
46.0	-0.081	0.023	-0.057	-0.067	-0.186	0.152
61.4		0.058	-0.023	-0.071	-0.189	
92.0	0.095	0.14	0.06	-0.079	-0.19	0.176
153.4	0.233	0.249	0.162	-0.089	-0.19	
245.5	0.286	0.296	0.198	-0.094	-0.195	0.214
398.9	0.313	0.335	0.226	-0.102	-0.203	0.236
552.3	0.317	0.343	0.231	-0.103	-0.205	0.243
705.7	0.323	0.353	0.237	-0.108	-0.212	0.255

Table S4: ¹H NMR chemical shift changes for clip **1** upon addition of TFA. $\Delta \delta = \delta_{(1+TFA)} - \delta_1$. Solvent CDCl₃. 1.1 µmol clip **1** in 0. 7 mL CDCl₃, 1.35 mmol TFA in 0.4 mL CDCl₃.

2. NMR Titrations of clip 2.

 $\Delta \delta = \delta_{(2+\text{guest})} \text{ - } \delta_2.$

(a) Clip 2 with resorcinol.

(b) Clip 2 with $AgClO_4$.

Figure S16: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip **2** with resorcinol.

Figure S17: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip **2** with Ag⁺.

Figure S18: ¹H NMR spectrum of Clip **2** upon addition of AgClO₄, bottom to top: a) 1:0; b) 1:1; c) 1:20 equivalents.

(c) Clip 2 with NH_4PF_6 .

Figure S19: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip **2** with NH₄⁺.

Figure S20: ¹H NMR spectrum of Clip **2** upon addition of NH₄PF₆: a) 1:0; b) 1:1.3; c) 1:9.6 equivalents

3. NMR Titrations of clip 3.

(a) Clip 3 with H_2O .

Figure S21: Temperature dependent ¹H NMR chemical shift changes $\Delta\delta$ (ppb) for clip **3** in the presence of water. (a) at 25 °C; (b) 0 °C; (c) -20 °C; (d) -55 °C.

OMe

ÓMe

Ph

N

Clip 3 :H ₂ O	25 °C	5 °C	0 °C	-20 °C	-55 °C	
	δ	δ	δ	δ	δ	Δδ
Ha	3.770	3.744	3.734	3.716	3.678	-0.092
H _b	5.572	5.581	5.581	5.582	5.564	-0.008
H ₁	6.577	6.496	6.478	6.389	6.262	-0.315
CH ₃	3.749	3.719	3.712	3.683	3.630	-0.119
			O -92	-8 010		

OMe

OMe

-315

н

-*120*

Table S5: Chemical shift changes for protons of clip 3 in variable temperature study in the presence of water. $\Delta \delta = \delta_{-55 \circ C} - \delta_{25 \circ C}$.

Ο

Figure S22: Temperature dependent ¹H NMR chemical shift changes $\Delta\delta$ (ppb) for clip **3** in the presence of water. Numbers correspond to the chemical shift difference upon changing the temperature from 25 °C to -55 °C. ($\Delta \delta = \delta_{-55 \text{ °C}} - \delta_{25 \text{ °C}}$.)

(c) Clip 3 with AgClO₄.

Table S6: ¹ H NMR chemical shift changes for clip 3 upon addition of AgClO ₄ . $\Delta \delta = \delta_{(3+Ag+)} - \delta_3$

Clip 3 :Ag	1:0	1:excess	
	δ	δ	Δδ
Ha	3.660	3.690	0.030
H _b	5.440	5.435	-0.005
H ₁	6.581	6.666	0.085
CH ₃	3.646	3.676	0.030
Ph	6.972	7.020	0.048

3:AgClO₄ Figure S23: ¹H NMR chemical shift changes $\Delta\delta$ (in ppb) for clip **3**:Ag⁺ ratio of > 1:80.

4. Overview charts – Chemical shift changes

(a) Clips with resorcinol

Figure S24: ¹H NMR chemical shift changes for clips 1 - 3 upon addition of resorcinol.

This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2007

(b) Clips with AgClO₄

2:AgClO₄ = 1:80

3:AgClO₄

Figure S25: ¹H NMR chemical shift differences observed for clips **1** - **3** on addition of AgClO₄.

(c) Clips with NH₄PF₆

Figure S26: 1 H NMR chemical shift differences observed for clips 1 and 2 on addition of NH₄PF₆.

Figure S27: Expansion from ¹H NMR spectrum obtained from solid residue after evaporation of clip **1** solution in PhNO₂ (500 MHz, CDCl₃ solution, 25°C, d1 = 40s). Clip **1** signals: 8.33 (H-5), 8.00 (H-7), 7.73 (H-6), PhNO₂ signals: 8.24 (*ortho*), 7.70 (*meta*), 7.55 (*para*).

7. Clip wall distances

Measured at outer center acenaphthene carbon

Distance was fixed at the indicated value, followed by energy minimization (Titan, AM1).

distance d _r , Å	Relative heat of formation, kJ/mol
3.619	35.35
3.869	28.72
4.119	24.41
4.369	21.53
4.869	18.09
5.869	12.61
6.869	8.33
7.869	4.93
8.869	2.39
9.369	1.45
9.869	0.74
10.369	0.26
10.869	0.01
11.369	0.00
11.869	0.23
12.369	0.72
12.869	1.46
13.869	3.76
14.869	7.24
15.869	11.98
16.869	18.23

Table S7: Relative heat of formation for clip **1** vs. wall distance d_r (Å).

8. Hydrogen bond parameters for clip 1 NH₄PF₆ crystal structure

D-HA		
d(D-H)	d(HA)	
d(DA)	Angle (DHA)	
N1F-H1FO5		
0.933(19)	2.01(2)	
2.887(2)	155(2)	
N1F-H1FF6i	i	
0.933(19)	2.64(2)	
3.246(3)	124(2)	
N1F-H3FN7	ii	
0.899(19)	2.24(2)	
3.091(2)	157(2)	
N1F-H3FO6	ii	
0.899(19)	2.32(2)	
2.963(2)	128(2)	

Table S8: Hydrogen bonds for clip 1 NH₄PF₆ [Å and °]. Atom numbers refer to the CIF file.

Symmetry transformations used to generate equivalent atoms: (i): x+1,y,z (ii): -x+2,-y,-z