

Electronic Supplementary Information[†]

Figure S1 The orientation and location of guest molecules in the channel of ternary host **5**. (a) *o*-xylene in **5c**, (b) *o*-chlorotoluene in **5d**, (c) *o*-dichlorobenzene in **5e**, and (d) anisole in **5f**.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Trigonal node \rightarrow 1D tape

2D close packed

2D (6,3) hexagonal network

Trigonal node \rightarrow 2₁ helix

2D (6,3) net built from 2_1 helices

6

8 9

5

2

Trigonal node $\rightarrow 4_1$ helix

10

Figure S2 Self-assembly pathway proposed to explain concomitant crystallization of $H_3TMA \bullet bipy$ -eta polymorphs I and II.^{13b}

3

Synthesis and co-crystallization

Dibromo-ethane-bipy (dibr-bipy-eta) was prepared using a literature procedure.¹⁸ ¹H-NMR (CDCl₃, δ in ppm, J in Hz): 8.70 (d, J = 6, 2 H), 7.40 (d, J = 6, 2 H), 5.27 (s, 1 H).

H₃CTA•bipy•(bipy-eta)_{0.5} (1)

1,3*cis*,5*cis*-Cyclohexanetricarboxylic acid, bipy and bipy-eta in 2:2:1 ratio in EtOH/benzene was heated and allowed to crystallize at room temperature. Crystals of H₃CTA·bipy·bipy-eta (2:2:1) obtained in a week. M.p. 175-180 °C. ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.24 (br s, 3 H) 8.74 (d, J = 4, 4 H), 8.45 (br s, 2 H), 7.84 (d, J = 4, 4 H), 7.25 (d, J = 7, 2 H), 2.94 (s, 2 H), 2.34 (br t, J = 8, 3 H), 2.11 (br d, J = 10, 3 H), 1.28 (br q, J = 10, 3 H).

H₃CTA•bipy-ete•(bipy-eta)_{0.5} (2)

H₃CTA, bipy-ete and bipy-eta in 2:2:1 ratio in n-propanol was heated and allowed to crystallize at room temperature. Crystals of H₃CTA·bipy-ete·bipy-eta (2:2:1) obtained in a week. M.p. 207-210 °C. ¹H-NMR (DMSO- d_6 , δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.62 (br s, 4 H), 8.45 (br s, 2 H), 7.60 (d, J = 8, 4 H), 7.50 (s, 2 H), 7.25 (d, J = 7, 2 H), 2.92 (s, 2 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.27 (br q, J = 10, 3 H).

H₃CTA•br-bipy-ete•(dibr-bipy-eta)_{0.5} (3)

A mixture of H₃CTA and dibr-bipy-eta in 2:3 ratio in EtOH/MeOH was heated and allowed to crystallize at room temperature. Crystals of H₃CTA·bipy-ete·bipy-eta (2:2:1) obtained in a week. M.p. 168-175 °C (crystals start to decompose at 145 °C and turned brown in color). ¹H-NMR (DMSO- d_6 , δ in ppm, J in Hz): 12.24 (br s, 3 H), 8.70 (br s, 6 H), 7.88 (s, 1 H), 7.40 (br m, 6 H), 6.21 (s, 1 H), 2.35 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.27 (br q, J = 10, 3 H).

H₃CTA•(bipy-eta)_{0.8}•(br-bipy-ete)_{0.2}•(dibr-bipy-eta)_{0.5} (4)

Co-crystallization of H₃CTA, bipy-eta and dibr-bipy-eta in 1:1:0.5 ratio in MeOH in refrigerator (4 °C) after one weak gave diffraction quality crystals of **4**. M.p. 170-175 °C (crystals starting decomposing at 150 °C and turned brown in color). ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.24 (br s, 3 H), 8.70 (br s, 2.8 H), 8.45 (br s, 3.2 H), 7.85 (s, 0.2 H), 7.70 (br s, 2.8 H), 7.31 (br m, 3.2 H), 6.20 (s, 1 H), 2.94 (s, 3.2 H), 2.35 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.27 (br q, J = 10, 3 H). Fractional H atom integration due to partial occupancy of base components.

$[5] \bullet (guest)_{0.5} [5 = H_3 CTA \cdot bipy-eta \cdot (bipy-bu)_{0.5}] (5a-5h)$

A mixture of H₃CTA, bipy-eta and bipy-bu in 2:2:1 ratio in n-propanol/and appropriate aromatic third component (= guest) gave crystals **5a**, **5c-5h** at room temperature in a week. H_3CTA , bipyeta, bipy-bu and *p*-dichlorobenzene in 2:2:1:1.5 were co-crystallized in ethanol to get **5b**. Suitable crystals of **5h** for X-ray diffraction were obtained from *n*-propanol while trying to prepare **5b** by using exact amount (2:2:1:1) of p-dichlorobenzene in repeated crystallization of alcohols. The presence of all four components is conformed by ¹H-NMR. **5a**: M.p. 139 °C (T_{onset}, DSC). ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.25 (br m, 6 H), 7.05 (s, 2 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.24 (s, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). **5b**: M.p. 159-162 °C. ¹H-NMR (DMSO- d_6 , δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.25 (br m, 6 H), 7.20 (s, 2 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). 5c: M.p. 130-132 °C. ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.25 (br m, 6 H), 7.12 (m, 1 H), 7.06 (m, 1 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.21 (s, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). **5d**: M.p. 133-135 °C. ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.41 (m, 1 H), 7.35 (m, 1 H), 7.25 (br m, 6 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.33 (br t, J = 8, 3 H), 2.36 (s, 1.5 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H) **5e**: M.p. 135-137 °C. ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.64 (br m, 1 H), 7.38 (br m, 1 H), 7.25 (br m, 6 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). **5f**: M.p. 133-135 °C. ¹H-NMR (DMSO- d_6 , δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.25 (br m, 6 H), 7.15 (br s, 1 H), 6.93 (br s, 0.5 H), 6.32 (s, 1 H), 3.75 (s, 1.5 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). **5g**: M.p. 135-140 °C ¹H-NMR (DMSO- d_6 , δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.44 (br s, 6 H), 7.25 (br m, 6 H), 2.94 (s, 4 H), 2.61 (br s, 2 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 2 H), 1.27 (br q, J = 10, 3 H). **5h**: M.p. 137-140 °C. ¹H-NMR (DMSO-*d*₆, δ in ppm, J in Hz): 12.20 (br s, 3 H), 8.47 (br s, 7 H), 7.27 (br m, 7 H), 2.94 (s, 4 H), 2.61 (br s, 3 H), 2.32 (br t, J = 8, 3 H), 2.10 (br d, J = 10, 3 H), 1.61 (br s, 3 H), 1.27 (br q, J = 10, 3 H).