Supporting Information

Dual Emission of a Bis(Pyrene)-Functionalized, Perbenzylated β-Cyclodextrin

Cheng Huo, Jean-Claude Chambron,* Michel Meyer

Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR CNRS n° 5260) Université de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

Table of Contents

Figure S 1: Detail (aliphatic region) of the ${}^{1}H/{}^{1}H$ COSY map of 12
Figure S 2: Detail (aliphatic region) of the TOCSY map of 1
Figure S 3: Selected regions of the ¹ H/ ¹ H ROESY map of 1
Figure S 4: ¹³ C/ ¹ H HSQC map of 1
Figure S 5: Detail (aliphatic region) of the ${}^{13}C/{}^{1}H$ HSQC map of 1
Figure S 6: ¹³ C/ ¹ H HMBC map of 1 7
Figure S 7: Detail (aromatic region) of the ${}^{13}C/{}^{1}H$ HMBC map of 1
Figure S 8: Detail (aliphatic region) of the ${}^{13}C/{}^{1}H$ HMBC map of 1
Figure S 9: ¹ H NMR spectrum of 1 in various solvents
Figure S 10: ¹ H NMR spectrum of 1
Figure S 11: Comparison of the ¹ H NMR spectra of 1-hydroxypyrene and 3 with that of 1
Figure S 12: Electronic absorption spectrum of 1 in DMSO
Figure S 13: Photograph of the fluorescence of a solution of 1 in $H_2O/DMSO$ mixtures
Figure S 14: Electronic absorption spectra of solutions of 1 in selected H ₂ O/DMSO mixtures14
Figure S 15: Photograph of the fluorescence of 1 upon addition of 1-heptanoic acid15
Figure S 16: Fluorescence spectra of 1 upon addition of 1-decanoic acid
Figure S 17: Fluorescence spectra of 1 upon addition of 6-chloro-1-hexanol
Figure S 18: Fluorescence spectra of 1 upon addition of 1-decanol
Chart S 1: The various substrates investigated17
Figure S 19: Fluorescence spectra of 1 in the presence of the compounds of Chart S 118

Figure S 1: Detail (aliphatic region) of the ${}^{1}\text{H}/{}^{1}\text{H}$ COSY map of **1** (600 MHz, d⁶-acetone).

Figure S 2: Detail (aliphatic region) of the TOCSY map of **1** (600 MHz, d⁶-acetone).

Figure S 3: Selected regions of the ${}^{1}\text{H}/{}^{1}\text{H}$ ROESY map of **1** (600 MHz, d⁶-acetone, mixing time: 300 ms).

Figure S 4: ${}^{13}C/{}^{1}H$ HSQC map of 1 (600 MHz, d⁶-acetone).

Figure S 5: Detail (aliphatic region) of the ${}^{13}C/{}^{1}H$ HSQC map of **1** (600 MHz, d⁶-acetone).

Figure S 6: ${}^{13}C/{}^{1}H$ HMBC map of **1** (600 MHz, d⁶-acetone).

Figure S 7: Detail (aromatic region) of the ${}^{13}C/{}^{1}H$ HMBC map of **1** (600 MHz, d⁶-acetone).

Figure S 8: Detail (aliphatic region) of the ${}^{13}C/{}^{1}H$ HMBC map of **1** (600 MHz, d⁶-acetone).

Figure S 9: ¹H NMR (600 MHz) spectrum of 1 in various solvents.

Figure S 10: ¹H NMR spectrum of **1** (600 MHz, d^6 -acetone). a) Aromatic region (* and o show the triplets of 7"_{A/D}). b) Aliphatic region. c) Full spectrum.

Figure S 11: Comparison of the ¹H NMR spectra of 1-hydroxypyrene (a) and **3** (b) with the spectrum of **1** (600 MHz, d^6 -acetone).

Figure S 12: Electronic absorption spectrum of **1** $(1.0 \times 10^{-6} \text{ mol dm}^{-3})$ in DMSO.

Figure S 13: Fluorescence emission from a solution of **1** $(1.0 \times 10^{-6} \text{ mol dm}^{-3})$ in H₂O/DMSO mixtures with increasing water concentration (a: pure DMSO, b: 15%, c: 18%, d: 20%, e: 40%) under a UV lamp (365 nm).

Figure S 14: Electronic absorption spectra of solutions of **1** (~ 1.0×10^{-6} mol dm⁻³) in selected H₂O/DMSO mixtures.

Figure S 15: Fluorescence emission of **1** $(1.0 \times 10^{-6} \text{ mol dm}^{-3})$ in H₂O/DMSO 80:20 v/v upon addition of 1-heptanoic acid (a: 0, b: 1.0×10^{-2} , c: 2.0×10^{-2} , d: 3.0×10^{-2} mol dm⁻³) under a UV lamp (365 nm).

Figure S 16: Fluorescence spectra of **1** $(1.0 \times 10^{-6} \text{ mol dm}^{-3}, 25 \text{ °C})$ upon addition of 1-decanoic acid (1: 0, 2: 2.0×10^{-4} , 3: 4.0×10^{-4} , 4: 6×10^{-4} , 5: 8.0×10^{-4} , 6: 1×10^{-3} , 7: $1.2 \times 10^{-3} \text{ mol dm}^{-3}$) in H₂O/DMSO 80:20 v/v containing 0.04% aqueous HCl. The inset shows the excimer emission band.

Figure S 17: Fluorescence spectra of **1** ($1.0 \times 10^{-6} \text{ mol dm}^{-3}$, 25 °C) upon addition of 6-chloro-1-hexanol (1: 0, 2: 5.0×10^{-3} , 3: 1.0×10^{-2} , 4: 1.5×10^{-2} , 5: 2.0×10^{-2} , 6: 2.5×10^{-2} , 7: $3.0 \times 10^{-2} \text{ mol dm}^{-3}$) in H₂O/DMSO 80:20 v/v.

Figure S 18: Fluorescence spectra of **1** ($1.0 \times 10^{-6} \text{ mol dm}^{-3}$, 25 °C) upon addition of 1-decanol (1: 0, 2: 2.0×10^{-4} , 3: 4.0×10^{-4} , 4: 6.0×10^{-4} , 5: 8.0×10^{-4} , 6: 1.0×10^{-3} , 7: 1.2×10^{-3} , 8: $1.4 \times 10^{-3} \text{ mol dm}^{-3}$) in H₂O/DMSO 80:20 v/v.

Chart S 1: The various substrates investigated.

Figure S 19: Detail of the stacked plot of the fluorescence spectra of **1** (1×10^{-6} mol dm⁻³, 25 °C) in the presence of the compounds of Chart S 1 in H₂O/DMSO 80:20 v/v. All compounds 0.1 mol dm⁻³, excepted 1,4-benzenedimethanol diol (5.0×10^{-2} mol dm⁻³), adamantyl carboxylic acid (2.0×10^{-3} mol dm⁻³), and myristic (tetradecanoic) acid (5.0×10^{-4} mol dm⁻³).