Supplementary Information Presented with the Paper Entitled

Specific Recognition of Fluoride Anion Using a Metallamacrocycle Incorporating a Uranyl-Salen Unit.

Massimo Cametti^{†,‡}, Antonella Dalla Cort[†], Maija Nissinen[‡], Kari Rissanen[‡] and Luigi Mandolini[†]

[†] IMC-CNR and Dipartimento di Chimica, Università "La Sapienza", Box 34, Roma 62, 00185 Roma, Italy. [‡]Nanoscience Center, Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland.

Warning: Care should be taken when handling uranyl containing compounds because of their toxicity and radioactivity.

Table of contents:

Figure S1. Titration of a 1:1 1-(TBA)F mixture with water in DMSO, 25°C.	S2
Figure S2. Titration of receptor 1 with (TBA)F in DMSO at different concentrations.	S2
Figure S3. ¹ H-NMR titration of a 1.2×10^{-3} M solution of 1 in DMSO-d ₆ with (TBA)F.	S3
Figure S4. Competitive UV-Vis titration in DMSO for receptor 1 and 2.	S4
Figure S5. UV-Vis titration of 3 upon addition of (TBA)F in DMSO, 25°C.	S 5
X-ray Data Collection and Crystal Structure Determination of 3 , Figure S6	S6
¹ H and ¹³ C spectra of receptor 2	S7
¹ H and ¹³ C spectra of receptor 3	S8
References	S9

Figure S1: UV-Vis spectral changes of a 8.3×10^{-5} M 1:1 mixture of 1 and (TBA)F in DMSO upon addition of water. The inset shows spectral changes at λ =420 nm.

Figure S2: UV-Vis titration of receptor 1 with (TBA)F in DMSO at different concentrations.

Figure S4: Competitive UV-Vis titration experiments with (TBA)F in the presence of excess (TMA)AcO. a) $[1] = 2.0x10^{-5}$ M, $[(TMA)AcO] = 2.0x10^{-3}$ M; b) $[1] = 4.3x10^{-5}$ M, $[(TMA)AcO] = 2.15x10^{-2}$ M; c) $[2] = 4.7x10^{-5}$ M, $[(TMA)AcO] = 2.35x10^{-2}$ M. Best fit of data points to eq 16 in ref 1 gave the following log K values: a) 6.5 ± 0.15 ; b) 6.3 ± 0.1 ; c) 6.5 ± 0.2 The curves represent best fits to the above equation.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Figure S5: UV-Vis spectral changes of 4.87×10^{-5} M **3** upon addition of (TBA)F in DMSO, 25°C. The inset shows spectral changes at $\lambda = 316$ nm (\bullet), and 388 nm (\circ).

X-ray Data Collection and Crystal Structure Determinations.

X-ray data for **3** were collected from orange needle-like crystal of size 0.05 x 0.3 x 0.5 mm on a Nonius Kappa CCD diffractometer using graphite monochromatized MoK_{α} radiation and the temperature of 173.0 K. Structure solution was performed by SHELXS-97 and refined on F^2 by full-matrix least-squares techniques (SHELXL-97).² Due to probable twinning of the crystal TWIN refinement was used. Hydrogen atoms were calculated to their idealised positions and refined as riding atoms (temperature factor 1.2 or 1.5 times C temperature factor). Absorption correction was applied in the final refinement.³ One of the methanols in the crystal lattice was refined isotropically with site occupation factor of 0.5. Residual electron density over 1.00 eÅ⁻³ was observed near uranium.

Figure S6: Complete crystallographic numbering of **3** (left) and the content of the asymmetric unit (right).

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Receptor 2:

¹H-NMR

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Receptor 3

¹H NMR

References

¹ Z.-X. Wang *FEBS Lett.*, 1995, **360**, 111-114.

²SHELXS-97 and SHELXL-97: G. M. Sheldrick, *SHELX97 - Programs for Crystal Structure Analysis (Release 97-2).* Institut für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.

³ R. H. Blessing, Acta Crystallogr., Sect. A, 1995, **51**, 33-38.