Supporting Information

Solvatochromism and linear solvation energy relationship of diol- and prolinefunctionalized azo dyes using the KAMLET–TAFT and CATALÁN solvent parameter sets

Katja Hofmann,^[a] Katja Schreiter,^[a] Andreas Seifert,^[a] Tobias Rüffer,^[b] Heinrich Lang,^[b] and Stefan Spange^[a]*

- ^[a] Department of Polymer Chemistry, Institute of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany *E-mail address:* stefan.spange@chemie.tu-chemnitz.de
- ^[b] Department of Inorganic Chemistry, Institute of Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany To whom correspondence pertaining to X-ray structure analyses should be addressed.

Solvent Parameter Sets:

solvent	KAMLET-TAFT parameter			CATALÁN parameter ^{a,b}			
	α	β	π^*	SA	SB	SPP	SP
cyclohexane	0.00	0.00	0.00	0.000	0.073	0.557	0.6830
<i>n</i> -hexane	0.00	0.00	-0.04	0.000	0.056	0.519	0.6164
triethylamine	0.00	0.71	0.14	0.000	0.885	0.617	0.6603
tetrachloromethane	0.00	0.10	0.28	0.000	0.044	0.632	0.7677
toluene	0.00	0.11	0.54	0.000	0.128	0.655	0.7816
benzene	0.00	0.10	0.59	0.000	0.124	0.667	0.7929
diethyl ether	0.00	0.47	0.27	0.000	0.562	0.694	0.6167
1,4-dioxane	0.00	0.37	0.55	0.000	0.444	0.701	0.7374
anisole	0.00	0.32	0.73	0.084	0.299	0.823	0.8204
tetrahydrofurane	0.00	0.55	0.58	0.000	0.591	0.838	0.7139
ethyl acetate	0.00	0.45	0.55	0.000	0.542	0.795	0.6558
chloroform	0.20	0.10	0.53	0.047	0.071	0.786	0.7833
pyridine	0.00	0.64	0.87	0.033	0.581	0.922	0.8416
dichloromethane	0.13	0.10	0.82	0.040	0.178	0.876	0.7612
1,2-dichloroethane	0.00	0.10	0.81	0.030	0.126	0.890	0.7711
benzonitrile	0.00	0.37	0.90	0.047	0.281	0.960	0.8507
acetone	0.08	0.43	0.71	0.000	0.475	0.881	0.6510
N,N-dimethylacetamide	0.00	0.76	0.88	0.028	0.650	0.930	0.7632
<i>N</i> , <i>N</i> -dimethylformamide	0.00	0.69	0.88	0.031	0.613	0.939	0.7589
dimethyl sulfoxide	0.00	0.76	1.00	0.072	0.647	1.000	0.8295
acetonitrile	0.19	0.40	0.75	0.044	0.286	0.895	0.6448
nitromethane	0.22	0.06	0.85	0.078	0.236	0.907	0.7096
1-decanol	0.70	0.82	0.45	0.259	0.912	0.765	0.7221
1-butanol	0.84	0.84	0.47	0.341	0.809	0.837	0.6742
2-propanol	0.76	0.84	0.48	0.283	0.830	0.848	0.6334
1-propanol	0.84	0.90	0.52	0.367	0.782	0.847	0.6581
ethanol	0.86	0.75	0.54	0.400	0.658	0.853	0.6334
methanol	0.98	0.66	0.60	0.605	0.545	0.857	0.6079
2,2,2-trifluoroethanol	1.51	0.00	0.73	0.893	0.107	0.908	0.5431

Table S1. KAMLET–TAFT [S1] and CATALÁN [S2,3] parameter set.

^{*a*}SA, SB, and SPP values for all solvents were taken from ref. 10b. ^{*b*}SP values for all solvents were taken from ref. 10c.

Results of the multiple linear regression analyses:

Table S2. Solvent-independent correlation coefficients *a*, *b* and *s* of the Kamlet–Taft parameters α , β and π^* , respectively, solute property of the reference system $\widetilde{V}_{max,0}$, correlation coefficient (*r*), significance (*f*), standard deviation (*sd*), and number of solvents (*n*) calculated for the solvatochromism of compounds **2a** and **2c**.

compound	$\widetilde{\mathcal{V}}_{max,\theta}$	а	Ь	\$	п	F	R	SD
2a	23.254	0.602	-0.695	0.248	26	< 0.0001	0.892	0.211
	(± 0.178)	(± 0.078)	(± 0.142)	(± 0.215)				
2a	23.091	0.607	-	-	26	< 0.0001	0.731	0.305
	(± 0.071)	(±0.113)						
2a	23.665	-	-0.784	-	26	0.004	0.535	0.378
	(±0.136)		(± 0.248)					
2a	23.153	-	-	0.231	26	0.599	0.406	0.444
	(±0.293)			(±0.277)				
2a	23.438	0.586	-0.732	-	26	< 0.0001	0.885	0.212
	(±0.082)	(±0.079)	(±0.139)					
2a	22.765	0.634	-	0.489	26	< 0.0001	0.763	0.294
	(±0.206)	(±0.111)		(±0.292)				
2a	23.684	-	-0.788	-0.026	26	0.017	0.445	0.385
	(±0.309)		(±0.259)	(±0.386)				
2c	22.678	0.555	-0.375	-0.523	27	< 0.0001	0.832	0.189
	(±0.140)	(±0.091)	(± 0.131)	(±0.178)				
2c	22.182	0.533	-	-	27	< 0.0001	0.699	0.234
	(±0.054)	(±0.109)						
2c	22.388	-	-0.135	-	27	0.540	0.123	0.325
	(±0.118)		(±0.217)					
2c	22.715	-	-	-0.615	27	0.035	0.406	0.299
	(±0.184)			(± 0.277)				
2c	22.320	0.588	-0.334	-	27	< 0.0001	0.760	0.217
	(± 0.080)	(± 0.104)	(+0.149)					
2c	22.487	0.498	-	-0 468	27	< 0.0001	0.763	0.216
	(±0.141)	(±0.102)		(± 0.202)				
2c	22.831	-	-0.200	-0.653	27	0.071	0.445	0.300
	(±0.218)		(± 0.201)	(±0.279)				

compound	$\widetilde{\mathcal{V}}_{max,\theta}$	а	b	\$	n	F	R	SD
2a	23.194 (±0.406)	1.116 (±0.217)	-0.708 (±0.177)	0.283 (±0.476)	26	< 0.0001	0.809	0.233
2a	23.109 (±0.070)	1.029 (±0.270)	-	-	26	5.773E-4	0.614	0.300
2a	(23.537) (+0.134)	-	-0.626	-	26	0.023	0.445	0.340
2a	(22.570) (+0.622)	-	(±0.257) -	0.821 (+0.740)	26	0.299	0.278	0.370
2a	(± 0.092) (± 0.092)	1.143 (±0.210)	-0.712 (+0.174)	-	26	< 0.0001	0.806	0.230
2a	22.800 (±0.514)	0.996 (±0.280)	-	0.376 (+0.612)	26	0.004	0.622	0.303
2a	22.879 (±0.581)	-	-0.620 (±0.256)	0.7839 (±0.677)	26	0.041	0.492	0.337
2c	23.132 (±0.337)	1.128 (±0.200)	-0.097 (±0.158)	-1.104 (±0.407)	27	< 0.0001	0.773	0.217
2c	22.191 (±0.055)	0.991 (±0.216)	-	-	27	1.082E-4	0.676	0.241
2c	22.333 (±0.125)	-	-0.015 (+0.235)	-	27	0.949	0.013	0.328
2c	22.840 (±0.489)	-	-	-0.620	27	0.299	0.207	0.321
2c	22.247 (±0.095)	1.013 (±0.220)	-0.129	-	27	5.038E-4	0.685	0.244
2c	23.105 (±0.329)	1.113 (±0.196)	-	-1.123 (+0.400)	27	< 0.0001	0.769	0.214
2c	22.837 (±0.502)	-	0.010 (±0.236)	-0.623 (±0.600)	27	0.590	0.208	0.327

Table S3. Solvent-independent correlation coefficients *a*, *b* and *s* of the CATALÁN parameters *SA*, *SB* and *SPP*, respectively, solute property of the reference system $\widetilde{V}_{max,0}$, correlation coefficient (*r*), significance (*f*), standard deviation (*sd*), and number of solvents (*n*) calculated for the solvatochromism of compounds **2a** and **2c**.

Table S4. Solvent-independent correlation coefficients *a*, *b* and *s* of the CATALÁN parameters *SA*, *SB* and *SP*, respectively, solute property of the reference system $\widetilde{V}_{max,0}$, correlation coefficient (*r*), significance (*f*), standard deviation (*sd*), and number of solvents (*n*) calculated for the solvatochromism of compounds **2a** and **2c**.

compound	$\widetilde{\mathcal{V}}_{max,\theta}$	а	b	S	n	F	R	SD
2a	25.254 (±0.397)	0.637 (±0.187)	-0.835 (±0.129)	-2.382 (±0.510)	26	<0.0001	0.908	0.167
2a	25.254 (±0.525)	-	-	-2.792 (±0.729)	26	8.122E-4	0.616	0.299
2a	24.413 (±0.652)	0.637 (±0.321)	-	-1.743 (±0.868)	26	6.755E-4	0.686	0.282

(± 0.384) (± 0.156) (± 0.503)	
2c 25.036 0.235 -0.352 -3.594 27 <0.0001 0.972 0	0.080
(± 0.200) (± 0.091) (± 0.060) (± 0.254)	
2c 24.939 −3.640 27 <0.0001 0.919 0	0.130
(±0.226) (±0.313)	
2c 24.590 0.2633.203 27 <0.0001 0.929 0	0.124
(± 0.285) (± 0.140) (± 0.379)	
2c 25.3570.360 -3.992 27 <0.0001 0.964 0	0.089
(± 0.174) (± 0.067) (± 0.225)	

Single crystal X-ray structure analysis:

Crystal data was collected on a Oxford Gemini Diffractometer at low temperature (100 K) using Cu- K_{α} -radiation ($\lambda = 1.54$ Å). The structure was solved by direct methods using SHELXS-97^{S4}. The structure was refined by full-matrix least squares procedures on F², using SHELXL-97^{S5}. All non hydrogen atoms were refined anisotropically. All hydrogen atoms were added on calculated positions, except of OH and NH which were found in difference fourier synthesis.

Table S5: Crystallographic data and collection parameters for 2a

empirical formula	$C_{18}H_{20}N_6O_9$
formula weight	464.40
color	orange
wavelength (Å)	1.54184
temperature (K)	100 (0)
crystal system	triclinic
space group	P1
<i>a</i> [Å]	6.7800 (10)
<i>b</i> [Å]	8.0970 (15)
<i>c</i> [Å]	19.7070 (16)
α [°]	95.732 (8)
β [°]	96.607 (9)
γ [°]	92.11 (6)
volume (Å ³)	1068.0 (2)
Ζ	2
calcd density (g*cm ⁻³)	1.444
absorption coeffizient (mm ⁻¹)	1.012
<i>F</i> (000)	484
crystal size (mm ³)	0.2 x 0.2 x 0.01
Θ range for data collection(°)	4.54-60.46
index ranges	$-7 \le h \le 7, -8 \le k \le 8, -22 \le l \le 22$
reflections collected	7626
independent reflections	3106

R _{int}	0.0194
data/restraints/parameter	3106/0/310
refinement method	full-matrix least-squares on F ²
goodness-of-fit on F ²	0.941
final R indicates $[I > 2\sigma(I)]$	R1 = 0.0343, wR2 = 0.0852
R indicates all data	R1 = 0.0487, wR2 = 0.0917
largest diff. peak and hole (e* Å3	0.192, -0.193

Table S6. Bond lengths [A] and angles [deg] for 2a

N(3)-N(4)	1.2631(19)
N(3)-C(4)	1.424(2)
O(1) - N(1)	1.2280(19)
O(2)-N(1)	1 2288(19)
N(1)-C(1)	1 468(2)
N(6)-O(8)	1 227(2)
N(6) - O(7)	1 2382(19)
N(6)-C(11)	1.2502(19) 1.449(2)
O(3)-N(2)	1.77(2)
N(4)-C(7)	1.2210(10)
C(11)-C(12)	1 386(2)
C(11) - C(10)	1.500(2)
C(7) C(12)	1.427(2) 1.270(2)
C(7) - C(12) C(7) - C(8)	1.379(2) 1 $400(2)$
O(4) N(2)	1.409(2) 1.2200(19)
N(5) C(10)	1.2300(18) 1.240(2)
N(5) - C(10) N(5) - C(14)	1.340(2) 1.456(2)
N(3)-C(14)	1.430(2)
C(1)-C(2)	1.380(2)
C(1)-C(6)	1.389(2)
C(4) - C(3)	1.394(2)
C(4)-C(3)	1.404(2)
C(3)-C(2)	1.379(2)
C(3)-N(2)	1.470(2)
C(5)-C(6)	1.378(2)
O(6)-C(15)	.422(3)
(5)-C(13)	1.425(2)
C(8)-C(9)	1.362(2)
C(9)-C(10)	1.432(2)
C(14)-C(13)	1.522(3)
C(14)-C(15)	1.522(3)
O(9)-C(17)	1.217(3)
C(17)-C(16)	1.487(3)
C(17)-C(18)	1.498(4)
N(4)-N(3)-C(4)	112.04(13)
O(1)-N(1)-O(2)	123.58(14)
O(1)-N(1)-C(1)	118.17(14)
O(2)-N(1)-C(1)	118.25(14)
O(8)-N(6)-O(7)	121.43(15)
O(8)-N(6)-C(11)	118.66(14)
O(7)-N(6)-C(11)	119.91(14)
N(3)-N(4)-C(7)	114.61(14)
C(12)-C(11)-C(10)	121.51(16)
C(12)-C(11)-N(6)	116.48(15)
C(10)-C(11)-N(6)	122.01(14)

C(12)-C(7)-N(4)	115.49(15)
C(12)-C(7)-C(8)	119.18(15)
N(4)-C(7)-C(8)	125.31(15)
C(10)-N(5)-C(14)	126.53(16)
C(2)-C(1)-C(6)	122.14(15)
C(2)-C(1)-N(1)	118.46(15)
C(6)-C(1)-N(1)	119.39(15)
C(5)-C(4)-C(3)	117.69(15)
C(5)-C(4)-N(3)	124.35(15)
C(3)-C(4)-N(3)	117.89(15)
C(2)-C(3)-C(4)	122.68(15)
C(2)-C(3)-N(2)	116.55(15)
C(4)-C(3)-N(2)	120.73(14)
C(6)-C(5)-C(4)	121.03(16)
O(3)-N(2)-O(4)	124.34(15)
O(3)-N(2)-C(3)	119.29(14)
O(4)-N(2)-C(3)	116.33(14)
C(7)-C(12)-C(11)	120.84(16)
C(9)-C(8)-C(7)	120.66(16)
C(5)-C(6)-C(1)	119.16(16)
C(3)-C(2)-C(1)	117.29(16)
C(8)-C(9)-C(10)	122.02(16)
N(5)-C(10)-C(11)	123.36(16)
N(5)-C(10)-C(9)	120.88(16)
C(11)-C(10)-C(9)	115.75(15)
N(5)-C(14)-C(13)	109.36(16)
N(5)-C(14)-C(15)	107.01(15)
C(13)-C(14)-C(15)	113.48(16)
O(6)-C(15)-C(14)	111.51(17)
O(5)-C(13)-C(14)	111.53(18)
O(9)-C(17)-C(16)	120.7(2)
O(9)-C(17)-C(18)	122.7(2)
C(16)-C(17)-C(18)	116.6(2)

Table S7. torsion angles [deg] for 2a

C(4)-N(3)-N(4)-C(7)	178.51(12)
O(8)-N(6)-C(11)-C(12)	0.1(2)
O(7)-N(6)-C(11)-C(12)	179.45(15)
O(8)-N(6)-C(11)-C(10)	179.80(16)
O(7)-N(6)-C(11)-C(10)	-0.8(2)
N(3)-N(4)-C(7)-C(12)	175.10(13)
N(3)-N(4)-C(7)-C(8)	-6.1(2)
O(1)-N(1)-C(1)-C(2)	1.8(2)
O(2)-N(1)-C(1)-C(2)	-177.71(14)
O(1)-N(1)-C(1)-C(6)	-179.52(14)
O(2)-N(1)-C(1)-C(6)	1.0(2)
N(4)-N(3)-C(4)-C(5)	6.3(2)
N(4)-N(3)-C(4)-C(3)	-176.73(13)
C(5)-C(4)-C(3)-C(2)	0.1(2)
N(3)-C(4)-C(3)-C(2)	-177.08(14)
C(5)-C(4)-C(3)-N(2)	177.75(14)
N(3)-C(4)-C(3)-N(2)	0.6(2)
C(3)-C(4)-C(5)-C(6)	0.5(2)
N(3)-C(4)-C(5)-C(6)	177.42(14)
C(2)-C(3)-N(2)-O(3)	-136.36(15)
C(4)-C(3)-N(2)-O(3)	45.8(2)

C(2)-C(3)-N(2)-O(4)	41.73(19)
C(4)-C(3)-N(2)-O(4)	-136.09(15)
N(4)-C(7)-C(12)-C(11)	179.51(14)
C(8)-C(7)-C(12)-C(11)	0.7(2)
C(10)-C(11)-C(12)-C(7)	-1.6(2)
N(6)-C(11)-C(12)-C(7)	178.10(14)
C(12)-C(7)-C(8)-C(9)	1.0(2)
N(4)-C(7)-C(8)-C(9)	-177.74(15)
C(4)-C(5)-C(6)-C(1)	-0.3(2)
C(2)-C(1)-C(6)-C(5)	-0.3(2)
N(1)-C(1)-C(6)-C(5)	-179.02(14)
C(4)-C(3)-C(2)-C(1)	-0.7(2)
N(2)-C(3)-C(2)-C(1)	-178.49(14)
C(6)-C(1)-C(2)-C(3)	0.9(2)
N(1)-C(1)-C(2)-C(3)	179.54(14)
C(7)-C(8)-C(9)-C(10)	-1.7(3)
C(14)-N(5)-C(10)-C(11)	173.76(17)
C(14)-N(5)-C(10)-C(9)	-7.7(3)
C(12)-C(11)-C(10)-N(5)	179.58(15)
N(6)-C(11)-C(10)-N(5)	-0.1(3)
C(12)-C(11)-C(10)-C(9)	0.9(2)
N(6)-C(11)-C(10)-C(9)	-178.79(14)
C(8)-C(9)-C(10)-N(5)	-177.96(16)
C(8)-C(9)-C(10)-C(11)	0.7(2)
C(10)-N(5)-C(14)-C(13)	-81.7(2)
C(10)-N(5)-C(14)-C(15)	155.05(18)
N(5)-C(14)-C(15)-O(6)	50.0(2)
C(13)-C(14)-C(15)-O(6)	-70.7(2)
N(5)-C(14)-C(13)-O(5)	175.74(15)
C(15)-C(14)-C(13)-O(5)	-64.9(2)

References:

- (S1) Y. Marcus, Chem. Soc. Rev. 1994, 22, 409.
- (S2) J. Catalán, *Handbook of Solvents*, G. Wypch (Ed.), ChemTech Publishing, Toronto, 2001, Chapter 9, p. 583.
- (S3) J. Catalán and H. Hopf, Eur. J. Org. Chem. 2004, 4694.
- (S4) G. M. Sheldrick, Acta Cryst., Sect. A 1990, 46, 467.
- (S5) G. M. Sheldrick, *SHELXL-97, Programm for refinement of crystal structures*, University of Göttingen, 1997.