Supporting Information

Colorimetric anion chemosensors based on anthraquinone : naked-eye detection of isomeric dicarboxylate and tricarboxylate anions

Yi-Shan Lin, Guan-Min Tu, Chi-Yung Lin, Yen-Tzu Chang and Yao-Pin Yen*

Departmenet of Applied Chemistry, Providence University, 200 Chungchi Road, Sha-Lu, Taichung Hsien 433, Taiwan

Figure SI-1.	Effect of anion (as $(C_4H_9)_4 N^+$ salt) on colour change of 1 in DMSO after the addition of 1.0
	equiv. of anion : (a) 1 only; (b) 1+hydroxide.
Figure SI-2.	NOESY plot of compound 1
Table 2.	Receptor distances of NH L ⁻ hydrogen bonds from <i>ab initio</i> HF/6-31G(d) calculations
Figure SI-3.	UV-vis spectral change of 1 operated in DMSO (5×10^{-5} M) after the addition of 2.0 equiv. of
	anions: (a) 1 only; (b) 1+ maleate; (c) 1+ fumararte.
Figure SI-4a.	¹ H NMR (400 MHz) spectra of sensor 1 (10 mM) in DMSO- d_6 upon addition of various
	quantities of <i>cis</i> -aconitate: (a) 0 equiv; (b) 0.3 equiv; (c) 1.0 equiv.
Figure SI-4b.	¹ H NMR (400 MHz) spectra of sensor 1 (10 mM) in DMSO- d_6 upon addition of various
	quantities of <i>trans</i> -aconitate: (a) 0 equiv; (b) 1.0 equiv; (c) 2.0 equiv.
Figure SI-5.	Dilution experiment of 1 in DMSO- d_6 by ¹ H NMR: (a) [1] = [<i>trans</i> -aconitate] = 1×10^{-2} M;
	(b) 5×10^{-3} M; (c) 2.5×10^{-3} M; (d) 1.25×10^{-3} M.
Figure SI-6a.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in 1 with
	a standard solution of cis-aconitate at 25° C. Titration profile (insert) indicates the formation
	of a 1:1 complex.
Figure SI-6b.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in 1 with a
	standard solution of <i>trans</i> -aconitate at 25° C. Titration profile (insert) indicates the formation
	of a 1:1 complex.
Figure SI-7.	Dilution experiment of 1 in DMSO- d_6 by ¹ H NMR: (a) [1] = [malate] = 1×10-2 M; (b) 5×10-3
	$M;(c) 2.5 \times 10^{-3} M.$
Figure SI-8a.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in 1 with
	a standard solution of malate at $25^\circ\!{\rm C}.$ Titration profile (insert) indicates the formation of a
	1:1 complex.

Figure SI-8b.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in 1 with
	a standard solution of tartrate at 25°C. Titration profile (insert) indicates the formation of a
	1:1 complex.
Figure SI-9a.	¹ H NMR (400 MHz) spectra of sensor 3 (10 mM) in DMSO- d_6 upon addition of various
	quantities of maleate: (a) 0 equiv; (b) 0.1 equiv; (c) 1.0 equiv.
Figure SI-9b.	¹ H NMR (400 MHz) spectra of sensor 3 (10 mM) in DMSO- d_6 upon addition of various
	quantities of malate: (a) 0 equiv; (b) 0.1 equiv; (c) 1.0 equiv.
Figure SI-9c.	Dilution experiment of 1 in DMSO- d_6 by ¹ H NMR: (a) [1] = [malate] = 1×10 ⁻² M; (b) 5×10 ⁻³
	M; (c) 2.5×10^{-3} M.
Figure SI-10.	Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of 3 in DMSO after the addition of 2.0
	equiv of anions. Top : (a) 3 only; (b) 3 + maleate; (c) 3 + fumarate, bottom : (a) 3 only; (d) 3 +
	malate; (e) 3 + tartrate.
Figure SI-11.	Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of 3 in DMSO after the
	addition of 2.0 equiv of anions: (a) 3 only, (b) $3+$ cis-aconitate, (c) $3+$
	trans-aconitate.
Table 3.	Receptor distances of NH L ⁻ hydrogen bonds from <i>ab initio</i> HF/6-31G(d) calculations
Figure SI-12a.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H ₂ O (95:5 v/v)
	solution in 1 with a standard solution of maleate at 25° C.
Figure SI-12b.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H ₂ O (95:5 v/v)
	solution in 1 with a standard solution of malate at 25° C.
Figure SI-12c.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H ₂ O (97:3 v/v)
	solution in 1 with a standard solution of <i>cis</i> -aconitate at 25° C.
Figure SI-12d.	Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H ₂ O (97:3 v/v)
	solution in 1 with a standard solution of <i>trans</i> -aconitate at 25° C.
Figure SI-13a.	Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of 1 in DMSO/H ₂ O (95:5 v/v) (5×10 ⁻⁵
	M) after the addition of 2.0 equiv. of anion: Top : (a) 1 only; (b) 1 +maleate; (c) 1 +fumarate,
	bottom : (a) 1 only; (d) 1 +malate; (e) 1 +tartrate.
Figure SI-13b.	Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of 1 in DMSO/H ₂ O (97:3 v/v) (5×10 ⁻⁵
	M) after the addition of 2.0 equiv. of anion: (a) 1 only; (b) $1 + cis$ -aconitate; (c) $1 + c$
	trans-aconitate.

Figure SI-1. Effect of anion (as $(C_4H_9)_4 \text{ N}^+$ salt) on colour change of **1** in DMSO after the addition of 1.0 equiv. of anion : (a) **1** only; (b) **1**+ hydroxide.

Figure SI-2. NOESY plot of compound 1

Table 2. Receptor distances^a of NH^{...} L⁻ hydrogen bonds from *ab initio* HF/6-31G(d) calculations

Receptor	Anion ^b	H(1) L ⁻	$H(2)^{\dots}L^{-}$	H(3) L ⁻	H(4) L
	maleate	2.0865(O6)	0.9755(O7)	1.9105(O8)	1.8085(O9)
	fumarate	1.7565(O6)	1.8005(O7)	1.7535(O8)	1.8175(O9)
1	cis-aconitate	2.0545(O6)	0.9675(O7)	1.7535(O8)	1.8085(O9)
1	trans-aconitate	1.8585(O6)	1.6925(O7)	1.7455(O8)	1.7215(O9)
	malate	1.7915(O6)	1.7705(O7)	1.8835(O8)	1.7755(O9)
	tartrate	1.8075(O6)	1.8165(O7)	1.9075(O8)	1.8165(O9)
	maleate	1.8115(O6)	1.7975(O7)	1.8625(O8)	1.7645(O9)
	fumarate	1.7825(O6)	1.8055(O7)	1.7765(O8)	1.8245(O9)
2	cis-aconitate	2.0085(O6)	2.6415(O7)	1.8075(O8)	1.7955(O9)
2	trans-aconitate	1.8415(O6)	2.8295(O7)	1.7625(O8)	1.7745(O9)
	malate	1.8155(O6)	1.8325(O7)	1.7525(O8)	1.8175(O9)
	tartrate	1.8165(O6)	1.8325(O7)	1.8165(O8)	1.8325(O9)

^a The unit of computed distances is Å.

^b Four oxygen atoms (O6, O7, O8 and O9) of guest (L⁻) form hydrogen bonds with the receptors where O6 is hydrogen-bonded to H1 and O7 to H2 and O8 to H3 and O9 to H4

Figure SI-3 UV-vis spectral change of **1** operated in DMSO (5×10^{-5} M) after the addition of 2.0 equiv of anions: (a) **1** only; (b) **1**+ maleate; (c) **1**+ fumarate.

Figure SI-4a. ¹H NMR (400 MHz) spectra of sensor **1** (10 mM) in DMSO- d_6 upon addition of various quantities of *cis*-aconitate: (a) 0 equiv; (b) 0.3 equiv; (c) 1.0 equiv.

Figure SI-4b. ¹H NMR (400 MHz) spectra of sensor **1** (10 mM) in DMSO- d_6 upon addition of various quantities of *trans*-aconitate: (a) 0 equiv; (b) 1.0 equiv; (c) 2.0 equiv.

Figure SI-5. Dilution experiment of 1in DMSO- d_6 by ¹H NMR: (a) [1] = [*trans*-aconitate] = 1×10⁻² M; (b) 5×10⁻³ M; (c) 2.5×10⁻³ M; (d) 1.25×10⁻³ M.

Figure SI-6a. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in **1** with a standard solution of *cis*-aconitate at 25° C. Titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-6b. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in **1** with a standard solution of *trans*-aconitate at 25°C. Titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-7. Dilution experiment of **1** in DMSO- d_6 by ¹H NMR: (a) [**1**] = [malate] = 1×10⁻² M; (b) 5×10⁻³ M; (c) 2.5×10⁻³ M.

Figure SI-8a. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in **1** with a standard solution of malate at 25° C. Titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-8b. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO solution in 1 with a standard solution of tartrate at 25° C. Titration profile (insert) indicates the formation of a 1:1 complex.

Figure SI-9a. ¹H NMR (400 MHz) spectra of sensor **3** (10 mM) in DMSO- d_6 upon addition of various quantities of maleate: (a) 0 equiv; (b) 0.1 equiv; (c) 1.0 equiv.

Figure SI-9b. ¹H NMR (400 MHz) spectra of sensor **3** (10 mM) in DMSO- d_6 upon addition of various quantities of malate: (a) 0 equiv; (b) 0.1 equiv; (c) 1.0 equiv.

Figure SI-9c. Dilution experiment of **1** in DMSO- d_6 by ¹H NMR: (a) [**1**] = [malate] = 1×10^{-2} M; (b) 5×10^{-3} M; (c) 2.5×10^{-3} M.

Figure SI-10. Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of **3** in DMSO after the addition of 2.0 equiv of anions. Top : (a) **3** only; (b) **3**+ maleate; (c) **3**+ fumarate, bottom : (a) **3** only; (d) **3**+ malate; (e) **3**+ tartrate.

Figure SI-11. Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of **3** in DMSO after the addition of 2.0 equiv of anions: (a) **3** only, (b) **3**+ *cis*-aconitate, (c) **3**+ *trans*-aconitate.

Table 3. Receptor distances^a of NH^{...}L⁻ hydrogen bonds from *ab initio* HF/6-31G(d) calculations

Receptor	Anion ^b	H(1)L	H(2)L	H(3)L	H(4)L ⁻
	maleate	2.2885(O6)	0.9765(O7)	1.8485(O8)	1.8475(O9)
3	fumarate	1.7415(O6)	1.8055(O7)	1.7575(O8)	1.8465(O9)
	malate	1.7485(O6)	1.8395(07)	1.7875(O8)	1.8105(O9)
	tartrate	1.7955(O6)	1.8265(07)	1.8095(O8)	1.8515(O9)

^a The unit of computed distances is Å.

^b Four oxygen atoms (O6. O7. O8 and O9) of guest (L⁻) form hydrogen bonds with the receptors where O6 is hydrogen n-bonded to H1 and O7 to H2 and O8 to H3 and O9 to H4

Figure SI-12a. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H₂O (95:5 v/v) solution in 1 with a standard solution of maleate at 25°C.

Figure SI-12b. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H₂O (95:5 v/v) solution in **1** with a standard solution of malate at 25°C.

Figure SI-12c. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H₂O (97:3 v/v) solution in **1** with a standard solution of *cis*-aconitate at 25° C.

Figure SI-12d. Family of spectra taken in the course of the titration of a 5×10^{-5} M DMSO/H₂O (97:3 v/v) solution in **1** with a standard solution of *trans*-aconitate at 25°C.

Figure SI-13a. Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of **1** in DMSO/H₂O (95:5 v/v) (5×10⁻⁵ M) after the addition of 2.0 equiv of anion: Top : (a) **1** only; (b) **1**+ maleate; (c) **1**+ fumarate, bottom : (a) **1** only; (d) **1**+ malate; (e) **1**+ tartrate.

Figure SI-13b. Effect of anions (as $(C_4H_9)_4N^+$ salt) on colour changes of **1** in DMSO/H₂O (97:3 v/v) (5×10⁻⁵ M) after the addition of 2.0 equiv of anion: (a) **1** only; (b) **1** + *cis*-aconitate; (c) **1** + *trans*-aconitate.