Improved complexation between dibenzo-24-crown-8 derivatives and dibenzylammonium salts by ion-pair recognition

Kelong Zhu, Mingming Zhang, Feng Wang, Ning Li, Shijun Li and Feihe Huang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. Tel and Fax: 86 571 8795 3189; E-mail: fhuang@zju.edu.cn

Electronic Supplementary Information (27 pages)

1.	Materials and methods	S2
2.	Synthesis of 5-(phthalimidomethyl)-1,2-phenylene-o-phenylene-24-crown-8 (5)	S2
3.	Synthesis of 5-aminomethyl-1,2-phenylene-o-phenylene-24-crown-8 (6)	S2
4.	Synthesis of 5-methylene-(N'-phenylureylene)-1,2-phenylene-o-phenylene- 24-crown-8 (2a)	S3
5.	Synthesis of compound 2b	S3
6.	Synthesis of compound 2c	S4
7.	¹ H and ¹³ C NMR spectra of 5, 6, 2a, 2b and 2c	S4- S9
	Determination of association constants of 1.3a, 1.3b, 1.3c, 2a.3a, 2a.3b, 2a.3c, 2b.3a,	
8.	2b·3b, 2b·3c, 2c·3a, 2c·3b and 2c·3c from integrations of complexed and uncomplexed	
	peaks in 1:1 host and guest solutions	S9-S17
9.	ESI-MS spectra of 5, 6, 2a, 2b and 2c	S18-S22
10.	ESI-MS spectra of equimolar acetonitrile solutions of 2a with 3b or 3c	S23-S26

1. Materials and methods

All reagents were purchased from commercial suppliers and used as received. Dibenzo-24-crown-8 (1) was purchased from Acros. Compound 4^{S1} and secondary ammonium salts $2^{S2, S3}$ were synthesized according to literature procedures. The intermediates **5** and **6** were synthesized according to a similar method reported by Gibson et al.^{S4} Solvents were either employed as purchased or dried according to procedures described in the literature. NMR spectra were recorded on a Bruker Advance DMX 500 spectrophotometer or a Bruker Advance DMX 400 spectrophotometer. Low-resolution electrospray ionization mass spectra were recorded on a Bruker Esruire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed on a Bruker Daltonics Apex III spectrometer. C, H, and N were analyzed on a Carlo Erba 1110 elemental analyzer. The K_a values of **1·3** and **2·3** complexed, slow-exchange complexation systems, were calculated from integrations of complexed and uncomplexed peaks in 2.00 mM host and guest solutions.

2. Synthesis of 5-(phthalimidomethyl)-1,2-phenylene-o-phenylene-24-crown-8 (5)

A solution of 4^{S1} (1.12 g, 2.25 mmol), potassium phthalimide (2.00 g, 10.8 mmol) and DMF (50.0 ml) was held at 90 °C for 24 hr and then cooled to room temperature. The solvent was evaporated under reduced pressure. The residue was dissolved in 200 mL of CH₂Cl₂ and washed with 100 mL of water twice. The organic layer was dried over anhydrous Na₂SO₄ and evaporated in vacuo to afford the crude product which was isolated by flash column chromatography using the EtOAc as the eluent to afford 900 mg (66%) of **5**. ¹H NMR (400 MHz, CDCl₃, 22 °C): δ 7.83 (2 H, m), 7.69 (2 H, m), 6.98 (2 H, m), 6.84–6.89 (4 H, m), 6.78 (1 H, m), 4.74 (2 H, s), 4.09–4.14 (8 H, m), 3.87–3.89 (8 H, m), 3.80 (8 H, s). ¹³C NMR (100 MHz, CDCl₃, 22 °C): δ 168.0, 148.9, 148.9, 148.5, 133.9, 132.1, 129.6, 123.3, 121.8, 121.4, 114.6, 114.1, 113.8, 69.9, 69.8, 69.5, 69.4, 41.3. Low-resolution ESI-MS: *m/z* 625.6 (84%) [**5** + NH₄]⁺, 630.6 (100%) [**5** + Na]⁺ and 646.6 (17%) [**5** + K]⁺. Anal. Calcd. for C₃₃H₃₇NO₁₀: C, 65.23; H, 6.14; N, 2.31. Found: C, 65.24; H, 6.12; N, 2.30.

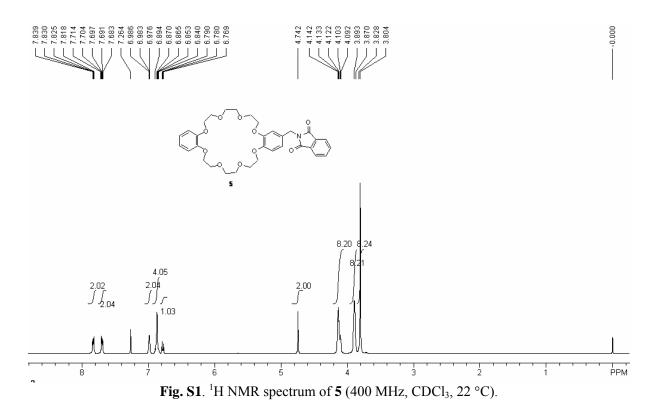
3. Synthesis of 5-aminomethyl-1,2-phenylene-o-phenylene-24-crown-8 (6)

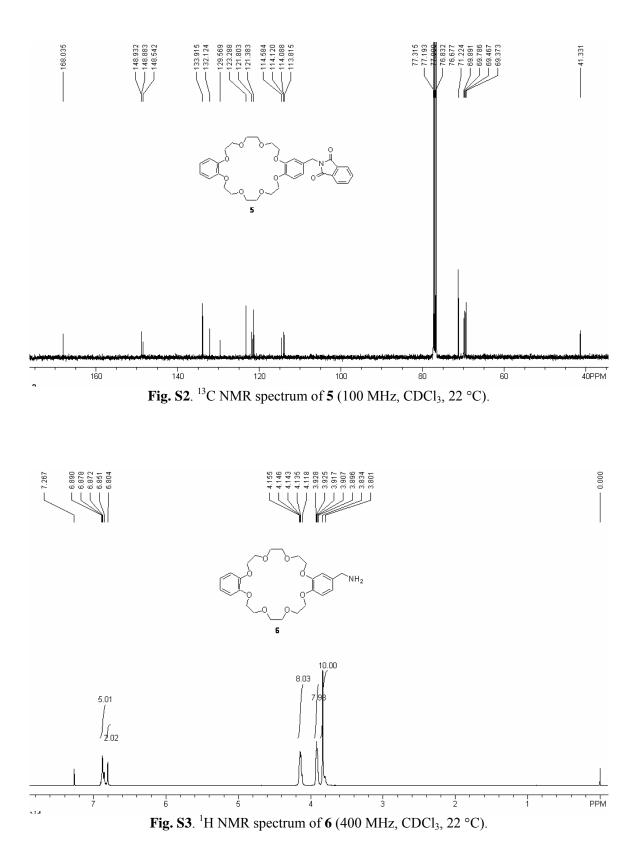
A solution of **5** (607 mg, 1.00 mmol), hydrazine monohydrate (0.500 mL, 8.50 mmol) and methanol (10.0 mL) was refluxed for 17 hours, cooled, concentrated by rotary evaporation and a white solid was obtained. The mixture was filtered and the solid was washed with 2.00 mL of methanol twice. The combined filtrate was neutralized by 2.00 M NaOH and extracted with CHCl₃. The combined extracts

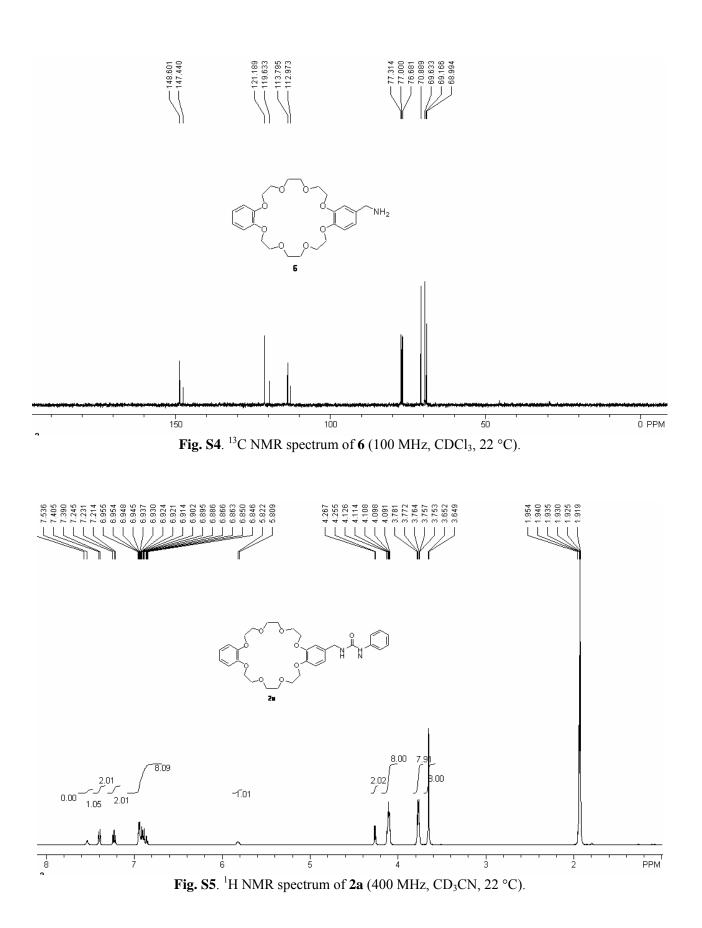
were dried over anhydrous Na₂SO₄ and evaporated in vacuo to afford **6** (400 mg, 84%) as a light yellow oil. ¹H NMR (400 MHz, CDCl₃, 22 °C) δ 6.85–6.89 (5 H, m),6.80 (2 H, s), 4.12–4.16 (8 H, m), 3.90–3.93 (8 H, m), 3.80–3.83 (10 H, m). ¹³C NMR (100 MHz, CDCl₃, 22 °C) δ 148.6, 147.4, 121.2, 119.6, 113.8, 113.0, 70.9, 69.6, 69.2, 69.0. Low-resolution ESI-MS: *m*/*z* 478.3 (24%) [**6** + H]⁺, 500.3 (100%) [**5** + Na]⁺ and 516.2 (17%) [**5** + K]⁺. High-resolution ESI-MS: *m*/*z* calcd for [**6** + H]⁺ C₂₅H₃₆NO₈, 478.2441, found 478.2437, error –0.8 ppm and calcd for [**6** + Na]⁺ C₂₅H₃₅NO₈Na 500.2260, found 500.2257, error –0.6 ppm.

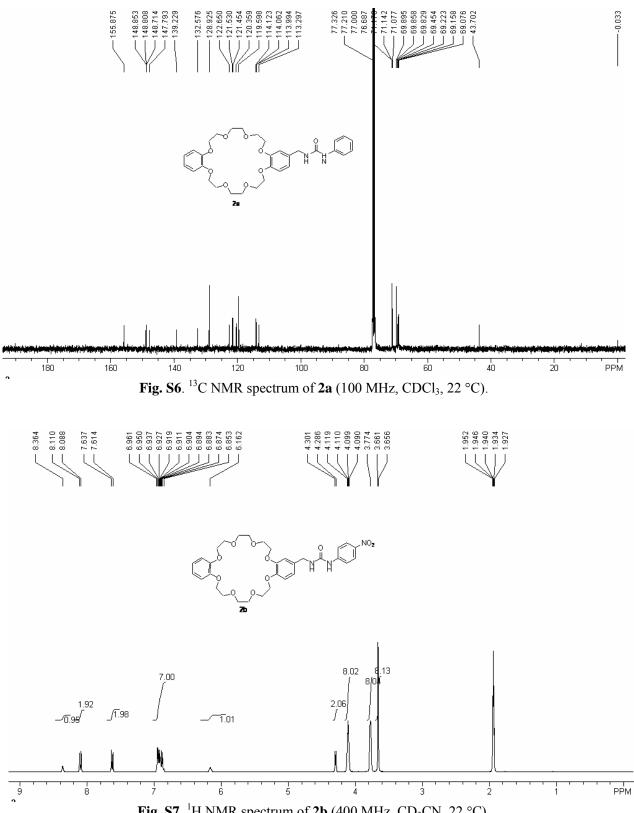
4. Synthesis of 5-methylene-(N'-phenylureylene)-1,2-phenylene-o-phenylene- 24-crown-8 (2a)

A solution of **6** (200 mg, 0.420 mmol) and phenylisocyanate (120 mg, 1.00 mmol) of in 20.0 ml of CHCl₃ was stirred at room temperature for 12 hours under N₂ protection. The reaction mixture was added with 10.0 ml of 1 M HCl and the organic layer was washed with 10.0 ml of brine twice and followed by 10.0 ml of deionized water twice. After dried over Na₂SO₄, the solvent was evaporated to afford the crude product which was purified by recrystallization from acetone to give **2a** as a white solide (227 mg, 91.0 %). ¹H NMR (500 MHz, CD₃CN, room temperature) δ 7.54 (1 H, s), 7.40 (2 H, d, *J* = 7.5 Hz), 7.23 (2 H, t, *J* = 7.5 Hz), 6.85–6.96 (8 H, m), 5.82 (1 H, s), 4.27 (2 H, d, *J* = 6.0 Hz), 4.09–4.13 (8 H, m), 3.75–3.78 (8 H, m), 3.65 (8 H, m). ¹³C NMR (100 MHz, CDCl₃, 22 °C) δ 155.9, 148.9, 148.8, 148.7, 147.8, 139.2, 132.6, 128.9, 122.7, 121.5, 121.5, 120.4, 119.6, 114.1, 114.1, 114.0, 113.3, 71.2, 71.1, 71.1, 69.9, 69.9, 69.8, 69.5, 69.2, 69.2, 69.1, 43.7. Low-resolution ESI-MS: *m/z* 597.2 (19%) [**2a** + H]⁺, 614.3 (19%) [**2a** + NH₄]⁺, 619.3 (100%) [**2a** + Na]⁺ and 635.2 (28%) [**2a** + K]⁺. Anal. Calcd. for C₃₂H₄₀N₂O₉: C, 64.41; H, 6.76; N, 4.69; Found: C, 64.43; H, 6.77; N, 4.69.

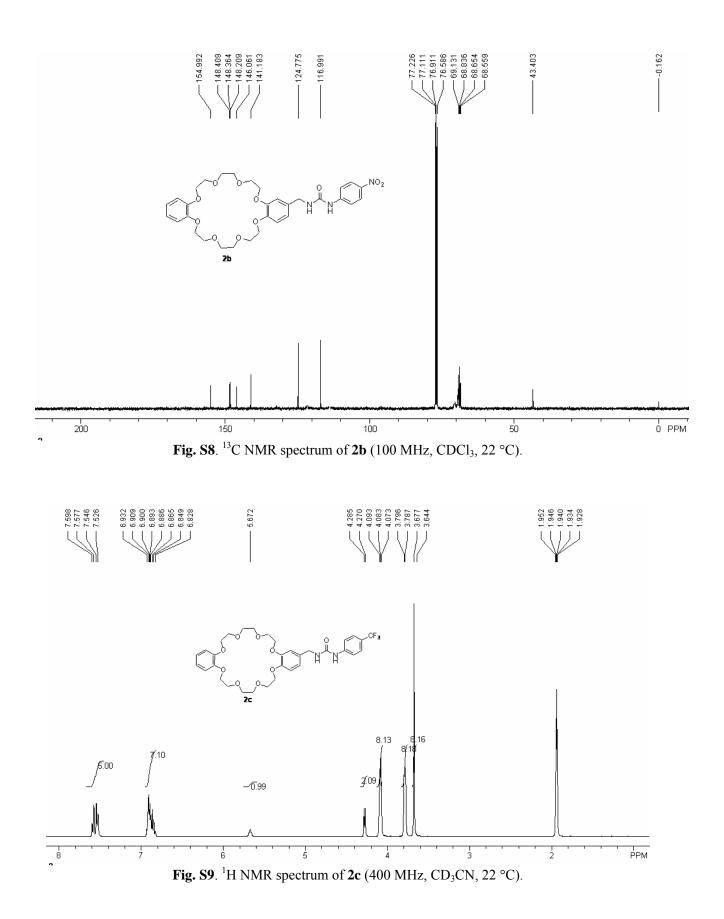

5. Synthesis of compound 2b

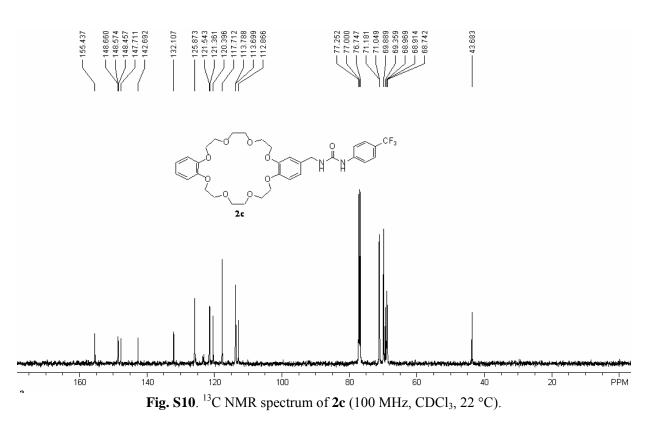

Compound **2b** was prepared according to the procedure for **2a** in 92% yield as a white solid. ¹H NMR (400 MHz, CD₃CN, room temperature) δ 8.36 (1 H, s), 8.10 (2 H, d, *J* = 8.8 Hz), 7.62 (2 H, d, *J* = 8.8 Hz), 6.85–6.96 (7 H, m), 6.12 (1 H, s), 4.29 (2 H, d, *J* = 6.0 Hz), 4.10 (8 H, m), 3.77 (8 H, m), 3.66 (8 H, m). ¹³C NMR (100 MHz, CDCl₃, 22 °C) δ 155.0, 148.4, 148.4, 148.2, 146.0, 141.2, 124.8, 117.0, 69.1, 68.8, 68.7, 68.6, 43.4. Low-resolution ESI-MS: *m*/*z* 659.3 (28%) [**2b** + NH₄]⁺, 664.3 (100%) [**2b** + Na]⁺ and 680.2 (27%) [**2b** + K]⁺. Anal. Calcd. for C₃₂H₃₉N₃O₁₁: C, 59.90; H, 6.13; N, 6.55; Found: C, 59.89; H, 6.10; N, 6.56.


6. Synthesis of compound 2c


Compound **2c** was prepared according to the procedure for **2a** in 90% yield as a white solid. ¹H NMR (400 MHz, CD₃CN, room temperature) 7.53–7.60 (5 H, m), 6.83–5.93 (7 H, m), 5.67 (1 H, s), 4.28 (2H, d, J = 6.0 Hz), 4.08 (8 H, m), 3.79 (8 H, m), 3.64–3.67 (8 H, m). ¹³C NMR (100 MHz, CDCl₃, 22 °C): δ 155.4, 148.7, 148.6, 148.5, 147.7, 142.7, 132.1, 125.9, 121.5, 121.4, 120.4, 117.7, 113.8, 113.7, 112.9, 71.2, 71.0, 69.9, 69.4, 69.0, 68.9, 68.7, 43.7. High-resolution ESI-MS: m/z calcd for [**2c** + Na]⁺ C₃₃H₃₉N₂O₉F₃Na, 687.2505, found 687.2455, error –7.3 ppm and calcd for [**2c** + K]⁺ C₃₃H₃₉N₂O₉F₃K 703.2245, found 703.2213, error –4.6 ppm.

7. ¹H and ¹³C NMR spectra of 5, 6, 2a, 2b and 2c





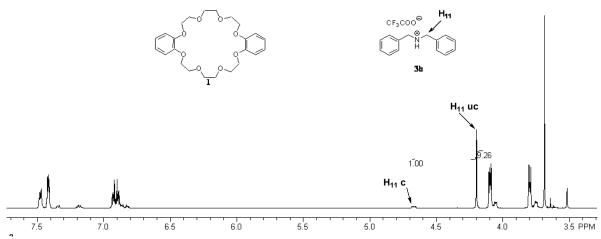
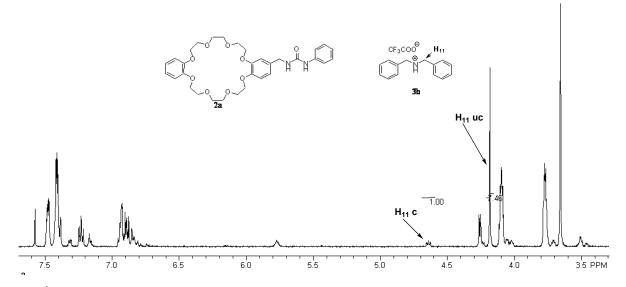
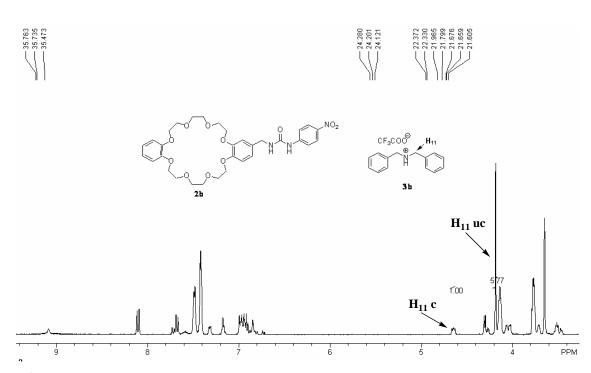
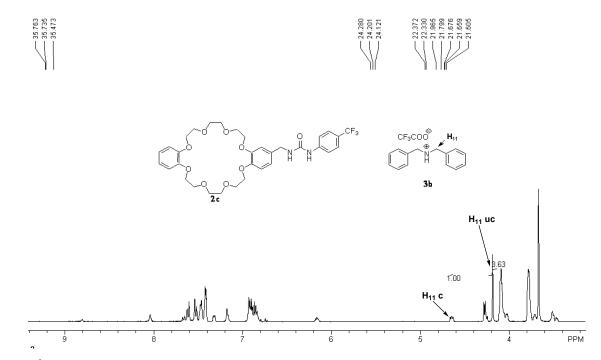
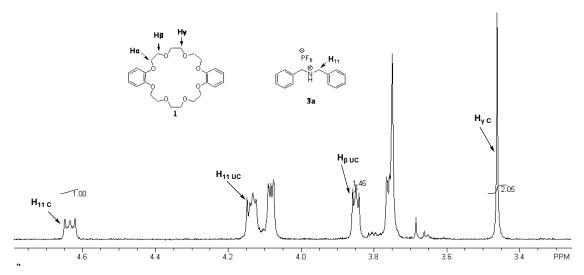


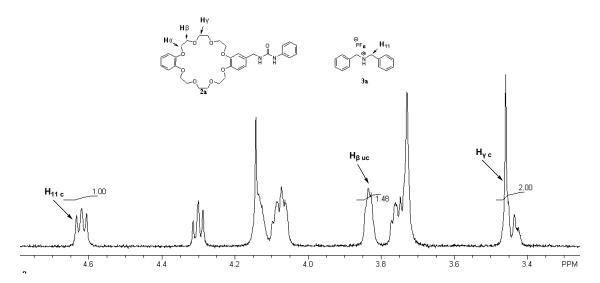
Fig. S7. ¹H NMR spectrum of **2b** (400 MHz, CD₃CN, 22 °C).

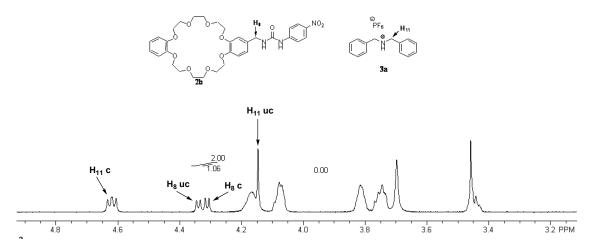


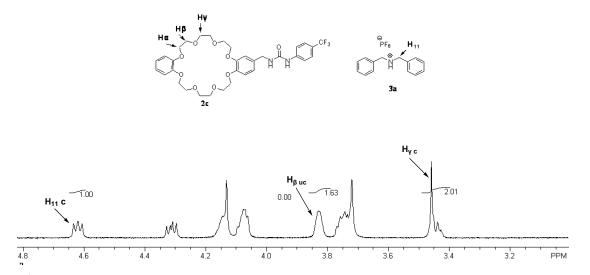

8. Determination of association constants of 1.3a, 1.3b, 1.3c, 2a.3a, 2a.3b, 2a.3c, 2b.3a, 2b.3b, 2b.3c, 2c.3a, 2c.3b and 2c.3c from integrations of complexed and uncomplexed peaks in 1:1 host and guest solutions

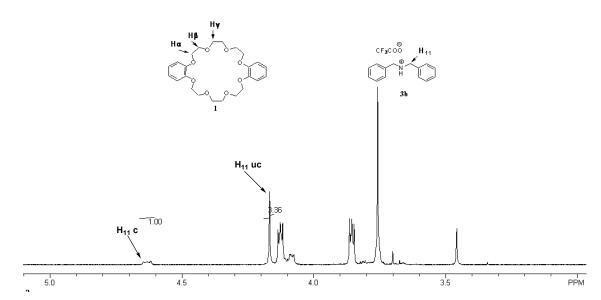

Fig. S11. ¹H NMR spectrum (500 MHz, CD₃CN, 22 °C) of 2.00 mM **1** and **3b**. The association constant $K_{a,1\cdot 3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/10.26) \times 1.00 \times 10^{-3}]/[(1 - 1.00/10.26) \times 1.00 \times 10^{-3}]^2 = 59 \text{ M}^{-1}$.


Fig. S12. ¹H NMR spectrum (500 MHz, CD₃CN, 22 °C) of 2.00 mM **2a** and **3b**. The association constant $K_{a,2a\cdot3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/8.46) \times 1.00 \times 10^{-3}]/[(1 - 1.00/8.46) \times 1.00 \times 10^{-3}]^2 = 78 \text{ M}^{-1}$.


Fig. S13. ¹H NMR spectrum (500 MHz, CD₃CN, 22 °C) of 2.00 mM **2b** and **3b**. The association constant $K_{a,2b\cdot3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/6.77) \times 2.00 \times 10^{-3}]/[(1 - 1.00/6.77) \times 2.00 \times 10^{-3}]^2 = 102 \text{ M}^{-1}$.


Fig. S14. ¹H NMR spectrum (500 MHz, CD₃CN, 22 °C) of 2.00 mM **2c** and **3b**. The association constant $K_{a,2c•3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/4.63) \times 2.00 \times 10^{-3}]/[(1 - 1.00/4.63) \times 2.00 \times 10^{-3}]^2 = 176 \text{ M}^{-1}$.


Fig. S15. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **1** and **3a**. The association constant $K_{a,1\cdot3a}$ value calculated from integrations of complexed peaks of H_{γ} of **1** and uncomplexed peaks of H_{β} of **1** is $[(2.05/3.51) \times 2.00 \times 10^{-3}]/[(1 - 2.05/3.51) \times 2.00 \times 10^{-3}]^2 = 1687 \text{ M}^{-1}$.


Fig. S16. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **2a** and **3a**. The association constant $K_{a,2a\bullet3a}$ value calculated from integrations of complexed peaks of H_γ of **2a** and uncomplexed peaks of H_β of **2a** is $[(2.00/3.48) \times 2.00 \times 10^{-3}]/[(1 - 2.00/3.48) \times 2.00 \times 10^{-3}]^2 = 1589 \text{ M}^{-1}$.

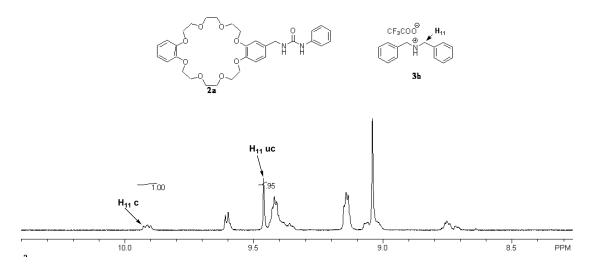
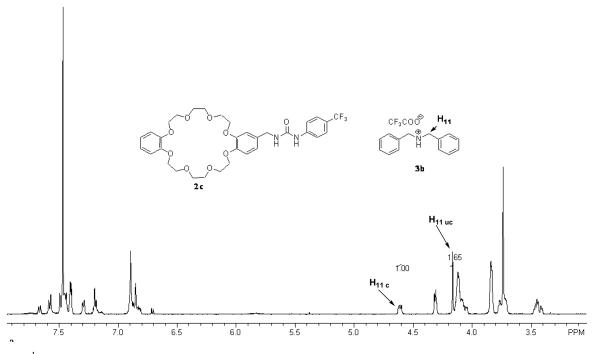
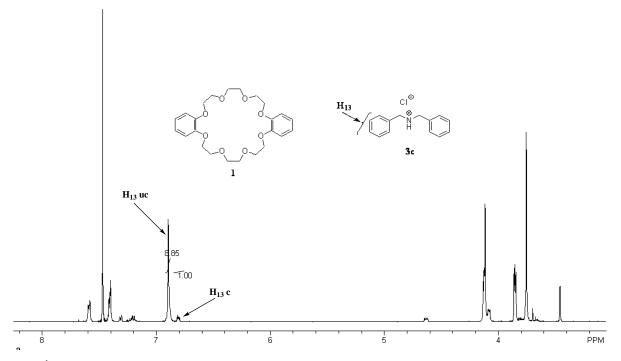
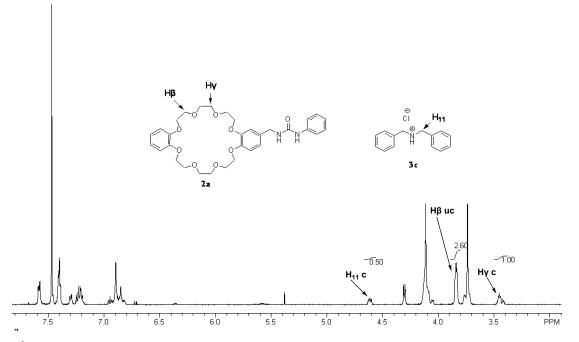
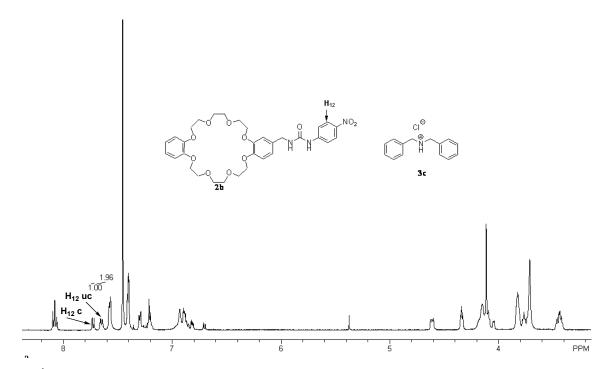

Fig. S17. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of of 2.00 mM **2b** and **3a**. The association constant $K_{a,2b\cdot3a}$ value calculated from integrations of complexed and uncomplexed peaks of H₈ of **2b** is $[(1.060/2.00) \times 2.00 \times 10^{-3}]/[(1 - 1.060/2.00) \times 2.00 \times 10^{-3}]^2 = 1200 \text{ M}^{-1}$.


Fig. S18. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **2c** and **3a**. The association constant $K_{a,2c+3a}$ value calculated from integrations of complexed peaks of H_γ of **2c** and uncomplexed peaks of H_β of **2c** is $[(2.01/3.64) \times 2.00 \times 10^{-3}]/[(1 - 2.01/3.64) \times 2.00 \times 10^{-3}]^2 = 1377 \text{ M}^{-1}$.


Fig. S19. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **1** and **3b**. The association constant $K_{a,2a\circ3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/4.36) \times 2.00 \times 10^{-3}]/[(1 - 1.00/4.36) \times 2.00 \times 10^{-3}]^2 = 193 \text{ M}^{-1}$.


Fig. S20. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **2a** and **3b**. The association constant $K_{a,2a\cdot3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/2.95) \times 2.00 \times 10^{-3}]/[(1 - 1.00/2.95) \times 2.00 \times 10^{-3}]^2 = 388 \text{ M}^{-1}$.


Fig. S21. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **2b** and **3b**. The association constant $K_{a,2b\cdot3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₂ of **2b** is $[(1.00/2.86) \times 2.00 \times 10^{-3}]/[(1 - 1.00/2.86) \times 2.00 \times 10^{-3}]^2 = 413 \text{ M}^{-1}$.


Fig. S22. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C) of 2.00 mM **2c** and **3b**. The association constant $K_{a,2c,3b}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₁ of **3b** is $[(1.00/2.65) \times 2.00 \times 10^{-3}]/[(1 - 1.00/2.65) \times 2.00 \times 10^{-3}]^2 = 487 \text{ M}^{-1}$.

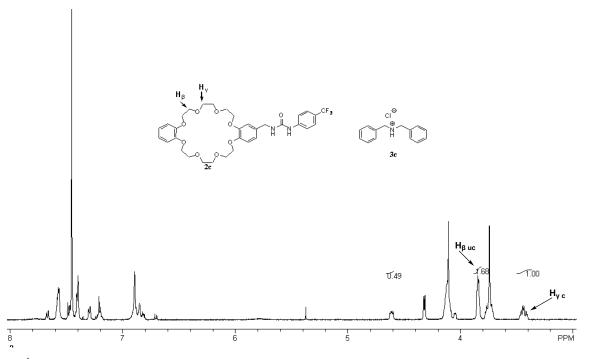

Fig. S23. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C)) of 2.00 mM **1** and **3c**. The association constant $K_{a,1-3c}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₃ of **3c** is $[(1.00/9.85) \times 2.00 \times 10^{-3}]/[(1 - 1.00/9.85) \times 2.00 \times 10^{-3}]^2 = 63 \text{ M}^{-1}$.

Fig. S24. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C)) of 2.00 mM **2a** and **3c**. The association constant $K_{a,2a+3c}$ value calculated from integrations of complexed peaks of H_γ of **2a** and uncomplexed peaks of H_β of **2a** is $[(1.00/3.60) \times 2.00 \times 10^{-3}]/[(1 - 1.00/3.60) \times 2.00 \times 10^{-3}]^2 = 266 \text{ M}^{-1}$.

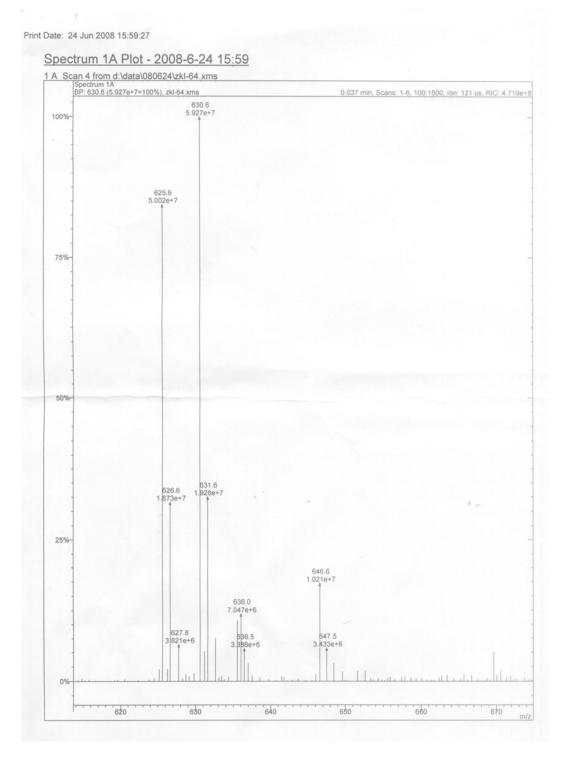


Fig. S25. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C)) of 2.00 mM **2b** and **3c**. The association constant $K_{a,2b\cdot3c}$ value calculated from integrations of complexed and uncomplexed peaks of H₁₂ of **2b** is $[(1.00/2.96) \times 2.00 \times 10^{-3}]/[(1 - 1.00/2.96) \times 2.00 \times 10^{-3}]^2 = 385 \text{ M}^{-1}$.

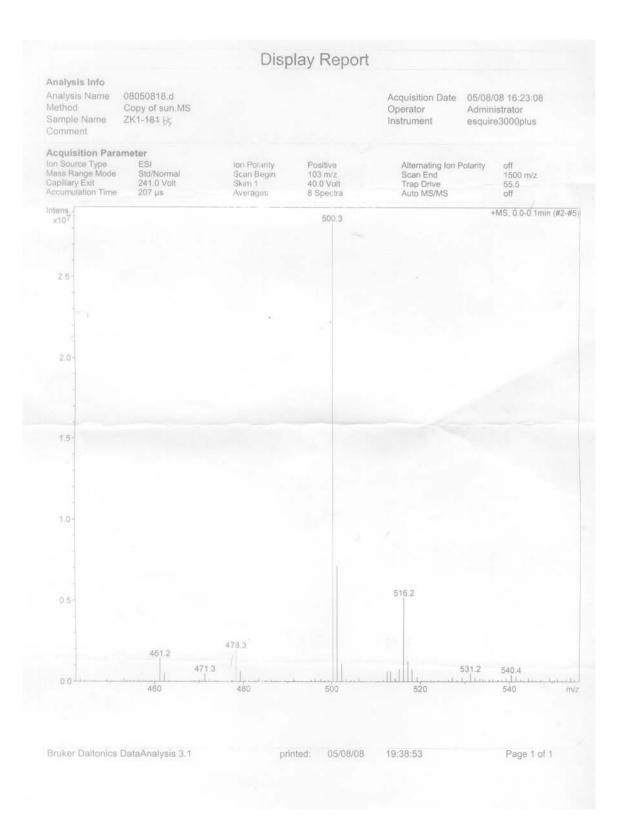
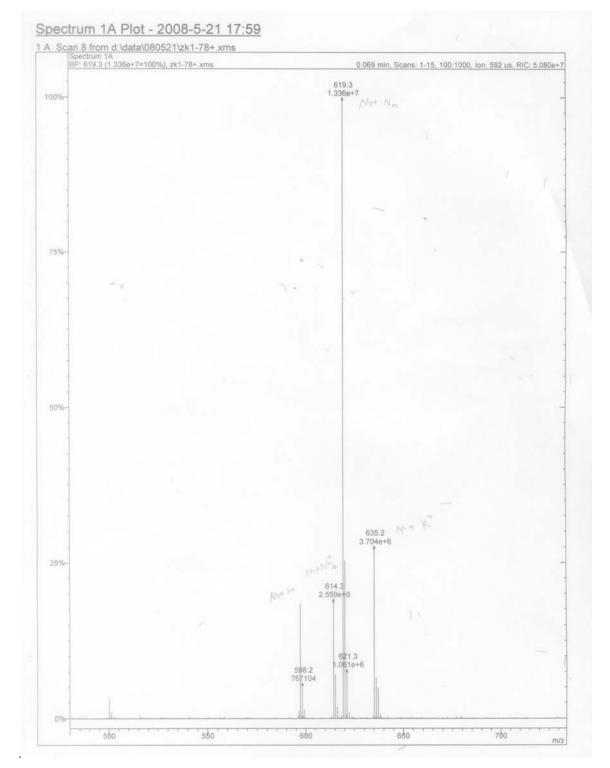
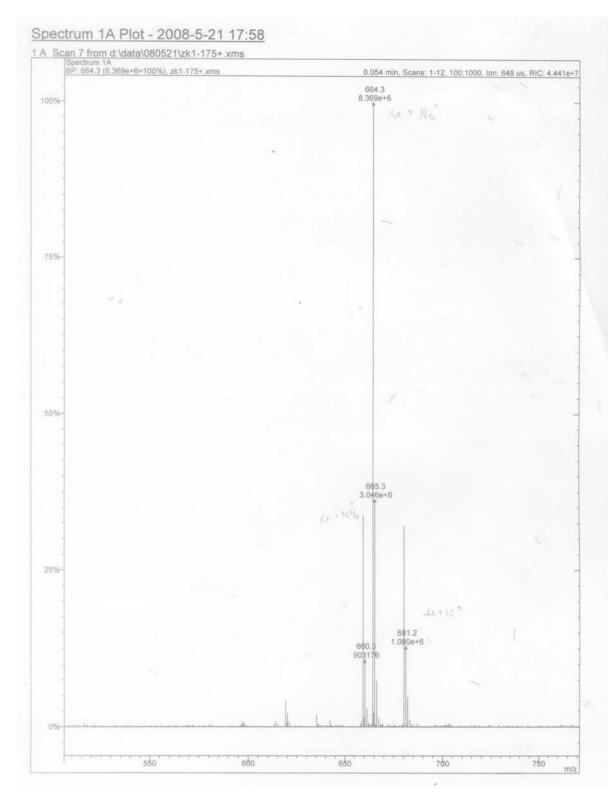


Fig. S26. ¹H NMR spectrum (500 MHz, 3:2 CDCl₃:CD₃CN, 22 °C)) of 2.00 mM **2c** and **3c**. The association constant $K_{a,2c+3c}$ value calculated from integrations of complexed peaks of H_γ of **2c** and uncomplexed peaks of H_β of **2c** is $[(1.00/2.68) \times 2.00 \times 10^{-3}]/[(1 - 1.00/2.68) \times 2.00 \times 10^{-3}]^2 = 475 \text{ M}^{-1}$.


9. ESI-MS spectra of 5, 6, 2a, 2b and 2c


Fig. S27. ESI⁺-MS of **5** in acetonitrile/methanol. Assignment of main peaks: m/z 625.6 (84%) [**5** + NH₄]⁺, 630.6 (100%) [**5** + Na]⁺ and 646.6 (17%) [**5** + K]⁺.

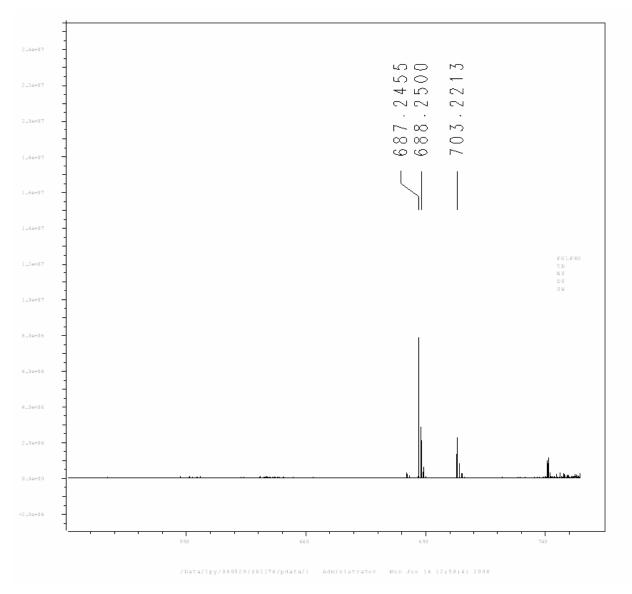

Fig. S28. ESI⁺-MS of **6** in acetonitrile/methanol. Assignment of main peaks: m/z 478.3 (24%) [**6** + H]⁺, 500.3 (100%) [**5** + Na]⁺ and 516.2 (17%) [**5** + K]⁺

Fig. S29. ESI⁺-MS of **2a** in acetonitrile/methanol. Assignment of main peaks: m/z 597.2 (19%) [**2a** + H]⁺, 614.3 (19%) [**2a** + NH₄]⁺, 619.3 (100%) [**2a** + Na]⁺ and 635.2 (28%) [**2a** + K]⁺.

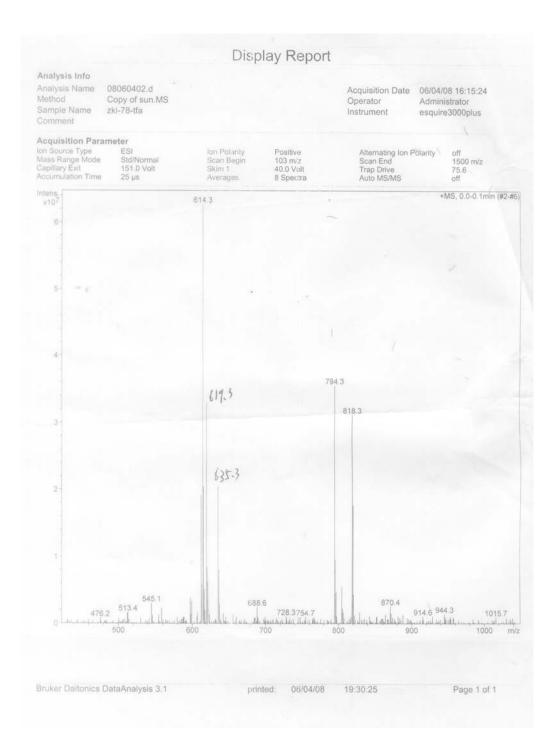


Fig. S30. ESI⁺-MS of **2b** in acetonitrile/methanol. Assignment of main peaks: m/z 659.3 (28%) [**2b** + NH₄]⁺, 664.3 (100%) [**2b** + Na]⁺ and 680.2 (27%) [**2b** + K]⁺.

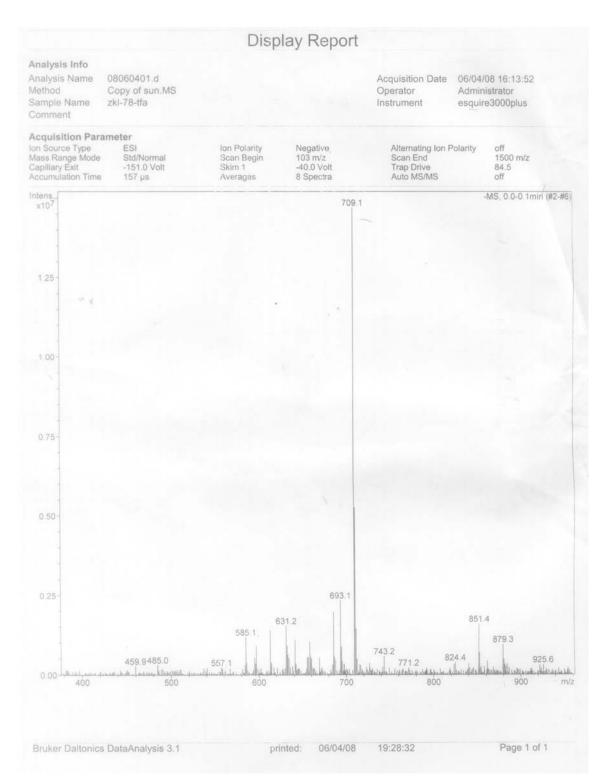
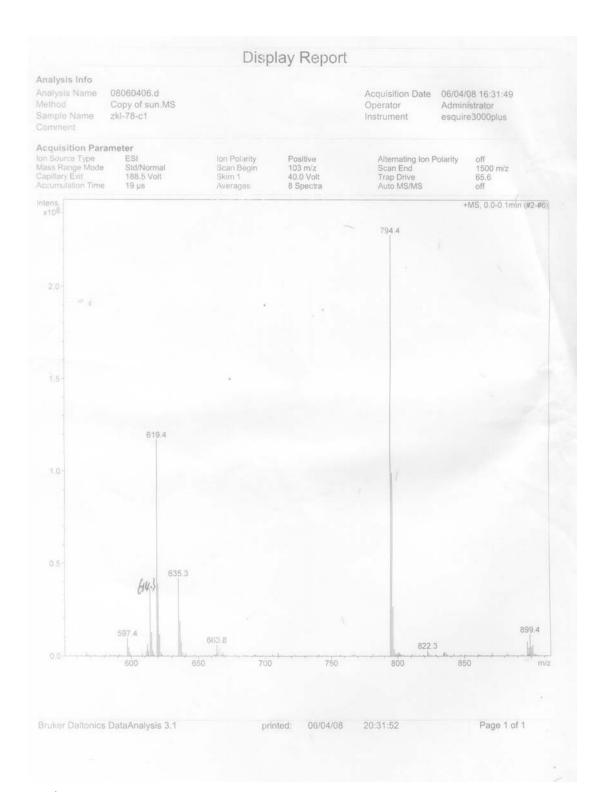


Fig. S31. HR-ESI⁺-MS of **2c** in acetonitrile/methanol. Assignment of main peaks: m/z calcd for $[2c + Na]^+ C_{33}H_{39}N_2O_9F_3Na$, 687.2505, found 687.2455, error -7.3 ppm and calcd for $[2c + K]^+ C_{33}H_{39}N_2O_9F_3K$ 703.2245, found 703.2213, error -4.6 ppm.


10. ESI-MS spectra of equimolar acetonitrile solutions of 2a with 3b or 3c

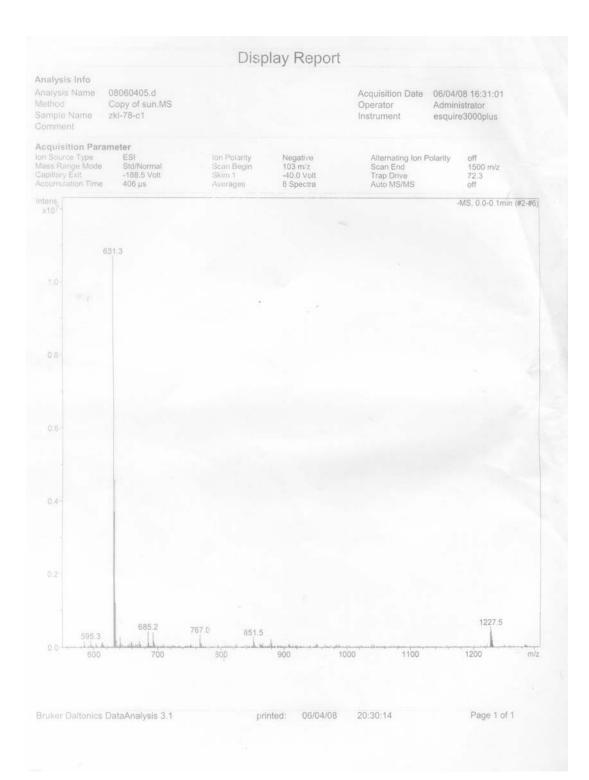

Fig. S32. ESI⁺-MS of a equimolar acetonitile solution of **2a** and **3b**. Assignment of main peaks: m/z 794.3 (60%) [**2a**+**3b** - CF₃COO]⁺, 614.3 (100%) [**2a** + NH₄]⁺, 619.3 (52%) [**2a** + Na]⁺ and 635.2 (35%) [**2a** + K]⁺.

Fig. S33. ESI⁻MS of a equimolar acetonitile solution of **2a** and **3b**. Assignment of main peaks: 709.1 (100%) [**2a** + CF_3COO]⁻.

Fig. S34. ESI⁺-MS of a equimolar acetonitile solution of **2a** and **3c**. Assignment of main peaks: m/z 794.3 (100%) [**2a**+**3b** - Cl]⁺, 614.3 (17%) [**2a** + NH₄]⁺, 619.3 (52%) [**2a** + Na]⁺ and 635.2 (20%) [**2a** + K]⁺.

Fig. S35. ESI⁻MS of a equimolar acetonitile solution of **2a** and **3c**. Assignment of main peaks: 631.3 (100%) [**2a** + Cl]⁻ and 1227.5 (10%) for [**2a** + **2a** + Cl]⁻.

- (S1) S. J. Loeb and A. D. Tramontozzi, Org. Biomol. Chem., 2005, 3, 1393.
- (S2) P. R. Ashton, E. J. T. Chrystal, P. Glink, T. S. Menzer, C. Schiavo, N. Spencer, J. F. Stoddart, P. A. Tasker,
 A. J. P. White and D. J. Williams, *Chem. Eur. J.*, 1996, 2, 709.
- (S3) J. W. Jones and H. W. Gibson, J. Am. Chem. Soc. , 2003, 125, 7001.
- (S4) H. W. Gibson, D. S. Nagvekar, N. Yamaguchi, F. Wang and S. W. Bryant, J. Org. Chem., 1997, 62, 4798.