The Chemistry of Phosphorodiselenoates: Structure, Catalysis and Formation of Se-esters Bijay Sarkar, Chiang-Shiang Fang, Lee-Yan You, and C. W. Liu* Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan Synthesis and characterization data for compounds 1~7 Genaral Synthesis of [$\{H_2N(CH_2)_2(CMe_2)_2CO\}\{Se_2P(OR)_2\}$], 1a-b: The reaction was carried out simply by stirring dsep ligand in the presence of 22 mol% of Fe powder in acetone at room temperature. In a typical reaction, to a solution of NH₄[Se₂P(OⁱPr)₂] (1.3 g, 4 mmol) in 50 mL acetone in a Schlenk fask, Fe powder (0.05 g, 0.90 mmol) was added at room temperature under N₂ and stirred for 12 h. It was then filtered through celite and evaporated under reduced pressure using vacuum pump. The solid residue was then washed with hexane and dissolved in ether to filter it again through celite. Finally it was dried under reduced pressure to get the product [$\{H_2N(CH_2)_2(CMe_2)_2CO\}\{Se_2P(O^iPr)_2\}$] (1a) as white solid. [{ $H_2N(CH_2)_2(CMe_2)_2CO$ }{ $Se_2P(O^iPr)_2$ }], (1a): Yield: 1.08g (58.7%). Mp. 101 °C (decomp.). Anal calcd for $C_{15}H_{32}NO_3PSe_2$: C 38.9; H 6.96; N 3.02, Found: C 39.0; H 6.99; N 2.97 %. ¹H NMR (300 MHz, (CD₃)₂CO, δ , ppm): 4.80(m, 2H, OC*H*(CH₃)₂), 3.78(s, br, NH₂), 2.77(s, 4H, CH₂), 1.59 (s, 12H, CH₃), 1.21 (d, 6Hz, 12H, OCH(C H_3)₂). ³¹P NMR (121.49 MHz, (CD₃)₂CO, δ , ppm): 81.5 (J_{PSe} = 741 Hz). FAB-MS (m/z): 464.7 [M+H]⁺ $[{H_2N(CH_2)_2(CMe_2)_2CO}{Se_2P(OEt)_2}], (1b)$: Yield: 1.22 g (69.3%). Mp. 152°C (decomp.). Anal calcd for C₁₃H₂₈NO₃PSe₂: C 35.8; H 6.44; N 3.22. Found: C 35.9; H 6.48; N 3.25%. ¹H NMR (300 MHz, (CD₃)₂CO, δ, ppm): 4.05(m, 4H, $-OCH_2CH_3$), 2.77(s, 4H, $-CH_2$ -), 1.63 (s, 12H, $-C(CH_3)_2$), 1.3(t, $^3J_{HH}$ = 14Hz, 6H, -OCH₂CH₃); ³¹P NMR (121.49 MHz, (CD₃)₂CO, δ , ppm): 86.7 ($J_{PSe} = 759$ Hz). General synthesis of [CH≡CCH₂SeP(Se)(OR)₂], 2a-b. In general, alkynylation of dsep ligand was carried out by stirring it with an equimolar amount of propargyl bromide in THF at room temparature. In a typical experiment, to a 20 mL THF solution of NH₄Se₂P(OⁱPr)₂ (0.30g, 0.93 mmol) propargyl bromide (80% solution in toluene) (100µL, 0.93mmol) was added and the mixture was stirred at room temperature for 1h under nitrogen atmosphere. The solution was filtered to get rid of NH₄Br. The filtrate was evaporated under vacuum to obtain $HC \equiv CCH_2SeP(Se)(O^iPr)_2$ (2a) as yellowish green oils. $HC = CCH_2SeP(Se)(O^iPr)_2$ (2a). Yield: 0.37g (79.0%). Anal. Calcd for $C_9H_{17}O_3PSe_2$: C, 31.23; H, 4.95. Found: C, 31.06; H, 4.67; IR (KBr, cm⁻¹): 3290 (v_{CH}), 2107($v_{C \equiv C}$). ¹H NMR (300 MHz, CDCl₃, δ , ppm): 4.87(m, 2H, -CH(CH₃)₂), 3.53 (dd, ³ J_{PH} = 12.9, $^{4}J_{HH} = 2.7, 2H, -SeCH_{2}C = CH), 2.28 (t, ^{4}J_{HH} = 2.7, 1H, -CH_{2}C = CH), 1.37 (d, ^{3}J_{HH} =$ 6.3 Hz, 6H, -CH(C H_3)₂); ¹³C NMR (75.5 MHz, CDCl₃, δ , ppm): 79.7 (d, J_{CP} = 6.4 Hz), 74.4 (d, J_{CP} = 6.4 Hz), 72.8, 23.6 (d, J_{CP} = 9.3 Hz), 16.3 (d, J_{CP} = 3.8 Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ , ppm): 77.7 (J_{PSe} = 891.4, 469.9 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ , ppm): 418.8 (d, J_{SeP} = 469.4 Hz), -88.4 (J_{SeP} = 891.6 Hz). HC=CCH₂SeP(Se)(OEt)₂ (2b). A similar procedure described above was adopted except that (NH₄)Se₂P(OEt)₂ was used instead of (NH₄)Se₂P(O^fPr)₂. Yield: 0.33g (77.1%). IR (KBr, cm⁻¹): 3310(ν_{CH}), 2212(ν_{C=C}).. ¹H NMR (300 MHz, CDCl₃, δ, ppm): 4.21 (m, 4H, -OCH₂CH₃), 3.47 (dd, ${}^{3}J_{PH}$ = 12.9 Hz, ${}^{4}J_{HH}$ = 2.7 Hz, 2H, -SeCH₂C=CH), 2.30 (t, ${}^{4}J_{HH}$ = 2.7 Hz, 1H, -CH₂C=CH), 1.39 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 6H, -OCH₂CH₃); ¹³C NMR (75.5 MHz, CDCl₃, δ, ppm): 79.8 (d, J_{CP} = 5.3 Hz), 72.6, 64.6 (d, J_{CP} = 5.2 Hz), 15.9 (d, J_{CP} = 4.0Hz), 15.7 (d, J_{CP} = 8.7 Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ, ppm): 82.9 (J_{PSe} = 896.6, 478.9 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ, ppm): 388.02 (d, J_{SeP} = 478.6 Hz), -93.7 (d, J_{SeP} = 896.9 Hz). MALDI-TOF: 318.04[M⁺]. ## General procedure for synthesis of $[CH_3C(O)SeP(Se)(OR)_2]$, 3. A suspension of $(NH_4)Se_2P(OR)_2$ in THF was stirred with acetyl chloride at room temperature under inert atmosphere to obtain the products as pale green oils. In a typical experiment, to a suspension of $NH_4Se_2P(O^iPr)_2$ (0.44g, 1.35mmol) in 20 mL THF was added acetyl chloride (100 μ L, 1.38mmol) and the mixture was stirred at room temperature for 1h under a nitrogen atmosphere. The reaction mixture was then evaporated to dryness at room temperature using vacuum. The residue was dissolved in 20 mL CH₂Cl₂ and filtered to get rid of the salt formed. The filtrate was evaporated under vacuum to obtain CH₃C(O)SeP(Se)(OⁱPr)₂ (3a) as a greenish yellow oil. $CH_3C(O)SeP(Se)(O^iPr)_2$ (3a). Yield: 0.37g (76.71%). Anal. Calcd for C₈H₁₇O₃PSe₂·CH₂Cl₂: C, 24.80; H, 4.40. Found: C, 24.81; H, 4.75.; ¹H NMR (300 MHz, CDCl₃, δ , ppm): 4.98 (m, 2H, -CH(CH₃)₂), 2.51 (d, ${}^{4}J_{HP}$ = 2.1 Hz, 3H, CH₃CO-), 1.36 (t, ${}^{3}J_{HH} = 6.3 \text{ Hz}$, 6H, -CH(CH₃)₂); ${}^{13}\text{C NMR}$ (75.48 MHz, CDCl₃, δ , ppm): 193.5 (d, $J_{CP} = 5.8 \text{ Hz}$), 75.2 (d, $J_{CP} = 6.4 \text{ Hz}$), 36.3, 23.7 (d, $J_{CP} = 4.5 \text{ Hz}$), 23.2 (d, $J_{\rm CP} = 5.1 \, \text{Hz}$; ³¹P NMR (121.49 MHz, CDCl₃, δ , ppm): 66.6 ($J_{\rm PSe} = 889.1$, 466.6 Hz); ⁷⁷Se NMR (57.24MHz, CDCl₃, δ, ppm): 729.7 (d, J_{SeP} = 466.6 Hz), -40.3 (d, J_{SeP} = 889.7Hz). MALDI-TOF: 389.30 [M+K⁺]. IR (KBr, cm⁻¹): 1736 (v_{CO}). CH₃C(O)SeP(Se)(OEt)₂ (3b). Yield: 0.38g (82.9%). ¹H NMR (300 MHz, CDCl₃, δ, ppm): 4.26 (m, 4H,-OC H_2 CH₃), 2.52 (d, ${}^3J_{PH}$ = 2.0 Hz, 3H, C H_3 CO-), 1.40 (t, ${}^3J_{H-H}$ = 7.1 Hz, 6H, -OCH₂CH₃); 13 C NMR (75.5 MHz, CDCl₃, δ , ppm): 192.6 (d, $J_{CP} = 5.9$ Hz), 65.3 (d, $J_{CP} = 5.6$ Hz), 36.4, 15.7 (d, $J_{CP} = 8.48$ Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ , ppm): 72.0 ($J_{PSe} = 896.2, 473.1 \text{ Hz}$); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ , ppm): 690.8 (d, J_{SeP} = 474.5 Hz), -44.3 (d, J_{SeP} = 897.9 Hz). MALDI-TOF: 322.109 [M⁺], IR (KBr, cm⁻¹): 1726 (v_{CO}). Synthesis of [(i PrO)₂P(Se)Se(CH₂)₃SeP(Se)(O i Pr)₂], 4. 1,3-Dibromopropane (25 μL, 0.25 mmol) was added to a 10 mL THF solution of [(NH₄)Se₂P(O i Pr)₂] (0.16 g, 0.50mmol) in a Schlenk flask and stirred for 8h under N₂ atmosphere. The reaction mixture was filtered to get rid of the salt formed during the reaction. The solvent was evaporated under vacuum at room temperature to obtain the product as colorless oil. Yield: 0.14g (88 %); Anal. Calcd for C₁₅H₃₄O₄P₂Se₄: C, 27.45; H, 5.22; Found; C, 27.76; H, 5.17; 1 H NMR (300 MHz, CDCl₃, δ, ppm): 4.84 (m, 4H, -OC*H*-), 3.00 (m, 4H, Se-C*H*₂-CH₂-Se), 2.25 (m, 2H, -CH₂C*H*₂CH₂-), 1.34 (d, 3 J_{HH} = 6.3 Hz, 24H); 13 C NMR (75.5 MHz, CDCl₃, δ, ppm): 74.4 (d, J_{CP}= 7.1 Hz), 31.4 (d, J=3.9Hz), 31.2, 23.5 (d, J_{CP} = 21.5 Hz); 31 P NMR (121.5 MHz, CDCl₃, δ, ppm): 79.7 (J_{PSe} = 884.9, 480.7Hz); 77 Se NMR (57.2 MHz, CDCl₃, δ, ppm): 352.7 (d, J_{SeP} = 480.7Hz), -90.1 (d, J_{SeP} = 885.1 Hz); MALDI-TOF MS: 680.36 [M+Na⁺]. ## General synthesis of $[1,2-(OH)C_6H_{10}\{SeP(Se)(OR)_2\}]$, 5a-b. The synthesis was carried out by stirring dsep ligand NH₄Se₂P(OR)₂ in THF with cyclohexene oxide at room temperature under nitrogen atmosphere. In a typical reaction, to a suspension of NH₄Se₂P(OⁱPr)₂ (0.40g, 1.23 mmol) in 20 mL of THF was added cyclohexene oxide (100µl, 1.38mmol) and the mixture was stirred at room temperature for 3h under a nitrogen atmosphere. Then the reaction mixture was evaporated to dryness. The resulting solution was vacuum-dried to obtain 1, 2-(OH)C₆H₁₀{SeP(Se)(OⁱPr)₂} (5**a**) as a pale green oil. [1,2-(OH)C₆H₁₀{SeP(Se)(OⁱPr)₂}], 5a. Yield: 0.24g (48.8%). Anal. Calcd for $C_{12}H_{25}O_3PSe_2$: C, 35.48; H, 6.20; Found: C, 35.65; H, 6.17; IR (KBr, cm⁻¹): 3400 (br, v_{CH}); ¹H NMR (300 MHz, CDCl₃, δ , ppm): 4.82 (m, 2H, -OC*H*(CH₃)₂), 3.52 (m, 1H, -CH₂C*H*(OH)CH-), 3.19 (m, 1H, -CH₂C*H*(Se)CH-), 2.68 (s, 1H, -CHO*H*), 2.04-2.27 (m, 2H, cyclohexane ring), 1.63-1.69 (m, 3H, cyclohexane ring), 1.29 (m, 15H, -CH₃ + cyclohexane); ¹³C NMR (75.5 MHz, CDCl₃, δ , ppm): 74.7 (d, J_{CP} = 7.5 Hz), 73.4 (d, J_{CP} = 3.5 Hz), 58.5 (d, J_{CP} = 4.2 Hz), 34.9, 33.7 (d, J_{CP} = 4.6 Hz), 26.9, 24.1, 23.6 (d, J_{CP} = 19.7 Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ , ppm): 78.6 (J_{PSe} = 879.8, 490.9); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ , ppm): 422.3 (J_{SeP} = 490.6), -70.6 (J_{SeP} = 880.6). MALDI-TOF: 429.24 [M+Na⁺]. [1, 2-(OH)C₆H₁₀{SeP(Se)(OEt)₂}], 5b. Similar reaction carried out with $(NH_4)Se_2P(OEt)_2$ instead of $NH_4Se_2P(O^iPr)_2$. The reaction was continued for 6 hours. Yield: 0.18g (38.8%). IR (KBr, cm⁻¹): 3400 (br v_{CH}); ¹H NMR (300 MHz, CDCl₃, δ , ppm): 4.11 (m, 4H, -OC H_2 CH₃), 3.48 (m, 1H, -CH₂CH(OH)CH-), 3.33 (m, 1H, -CH₂CH(Se)CH-), 3.04-3.15 (m, 2H, cyclohexane ring), 1.49-2.42 (m, 7H, cyclohexane ring), 1.29 (m, 12H, -CH₂CH₃); ¹³C NMR (75.5 MHz, CDCl₃, δ , ppm): 73.1 (d, J_{CP} = 3.6 Hz), 64.8 (d, J_{CP} = 9.1 Hz), 58.4 (d, J_{CP} = 3.8 Hz), 35.0, 34.1 (d, J_{CP} = 16.2 Hz), 26.8, 24.1, 15.6 (d, J_{CP} = 8.7 Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ , ppm): 83.8 (J_{PSe} =886.5, 500.1 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ , ppm):): 379.4 (d, J_{SeP} = 503.7 Hz), -75.3 (d, J_{SeP} = 887.2Hz). MALDI-TOF: 379.04 [M+H⁺]. Synthesis of [CH₃COCH₂CH₂SeP(Se)(OⁱPr)₂], 6. To a solution of NH₄Se₂P(OⁱPr)₂ (0.44g, 1.35mmol) in 20 mL of THF was added but-3-en-2-one (100µl, 1.35 mmol) and stirred at room temperature for 8h under nitrogen atmosphere. Then the solvent and the excess of but-3-en-2-one were removed under vacuum. The compound was isolated by preparative TLC by using 5% EA in hexane. After running the solvent TLC plate showed 4 spots were isolated and the second spot from the top was the desired compound. After cutting the silica gel from the TLC plate, CH₂Cl₂ was added to dissolve it and filtered to isolate the product to obtain greenish yellow oil. [CH₃COCH₂CH₂SeP(Se)(OⁱPr)₂], 6. Yield: 0.15g (29.8%). Anal. Calcd. for $C_{10}H_{21}O_3PSe_2 \cdot 0.5CH_2Cl_2$: C, 30.53; H, 5.37; Found: C, 30.70; H, 5.43. IR (KBr, cm⁻¹): 1718 (v_{CO}). ¹H NMR (300 MHz, CDCl₃, δ , ppm): 4.84 (m, 2H, -CH(CH₃)₂), 3.06(m, 4H, CH₃COCH₂CH₂-), 2.16(s, 3H, CH₃COCH₂CH₂-), 1.35 (m, 6H, -CH(CH₃)₂); ¹³C NMR (75.5 MHz, CDCl₃, δ , ppm): 206.8, 74.4 (d, $J_{CP} = 7.2$ Hz), 44.2 (d, $J_{CP} = 2.4$ Hz), 30.0, 24.2 (d, $J_{CP} = 3.8$ Hz), 23.6 (d, $J_{CP} = 4.3$ Hz); ³¹P NMR (121.5 MHz, CDCl₃, δ, ppm): δ 80.5 (J_{PSe} = 884.7, 448.4 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ, ppm): 377.9 (d, $J_{SeP} = 477.9 \text{ Hz}$), -93.5 (d, $J_{SeP} = 882.6 \text{ Hz}$). MALDI-TOF: 379.22 [M+H]⁺. ## General synthesis of [EtO₂CCH=CHSeP(Se)(OR)₂], 7a-b. Michael addition type reactions of $NH_4Se_2P(OR)_2$ on ethyl propiolate were carried out by stirring the reactants at room temperature in THF under N_2 atmosphere. In a typical reaction, to a suspension of $NH_4Se_2P(O^iPr)_2$ (0.40g, 1.23mmol) in 20 mL of THF, was added ethyl propiolate (130 μ l, 1.24mmol) and the mixture was stirred at room temperature for 8h under nitrogen atmosphere. Then the reaction mixture was evaporated to dryness at room temperature under vacuum to obtain the product $EtO_2CCH=CHSeP(Se)(O^iPr)_2$ (7a) as a yellowish green oil. [EtO₂CCH=CHSeP(Se)(OⁱPr)₂], 7a. Yield: 0.33g (66.1%). ¹H NMR (300 MHz, CDCl₃, δ, ppm): 7.79 (dd, ${}^{3}J_{HH} = 9.48$ Hz, ${}^{3}J_{PH} = 17.79$ Hz, 1H, -SeCH=CHCO), 6.45(d, 0.92 H, ${}^{3}J_{HH} = 9.51$ Hz, -SeCH=CHCO), 6.26 (d, ${}^{3}J_{HH} = 15.85$ Hz, 0.08H, -SeCH=CHCO), 4.80 (m, 2H,-CH(CH₃)₂), 4.18 (m, 2H, CH₃CH₂O-), 1.3 (m, 12H, -CH(CH₃)₂); ¹³C NMR (75.5 MHz, CDCl₃, δ, ppm): 166.8, 144.5, 119.3 (d, $J_{CP} = 6.3$ Hz), 74.7 (d, $J_{CP} = 6.3$ Hz), 60.8 (d, $J_{CP} = 13.3$ Hz), 23.5(d, $J_{CP} = 24.2$ Hz), 14.3; ³¹P NMR (121.5 MHz, CDCl₃, δ, ppm): 82.3 ($J_{PSe} = 894.3$, 418.1 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ, ppm): 412.8 (d, $J_{SeP} = 418.3$ Hz), -82.4 (d, $J_{SeP} = 894.2$ Hz). IR (KBr, cm⁻¹): 1716 (ν_{CO}). MALDI-TOF: 445.27 [M+K⁺]. [EtO₂CCH=CHSeP(Se)(OEt)₂], 7b. The product obtained in a similar reaction as described before while NH₄Se₂P(OEt)₂ was used instead of (NH₄)Se₂P(OⁱPr)₂. The reaction was completed in 8h. Yield: 0.37g (80.1%). Anal. Calcd for $C_9H_{17}O_4PSe_2$: C, 28.59; H, 4.53; Found: C 28.80; H 4.53. ¹H NMR (300 MHz, CDCl₃, δ , ppm): 7.78 (dd, ${}^3J_{HH} = 9.54$ Hz, ${}^3J_{PH} = 17.64$ Hz, 1H, -SeCH = CHCO), 6.48(d, $J_{HH} = 9.54$ Hz, 0.98 H, -SeCH = CHCO), 6.28 (d, ${}^3J_{HH} = 15.90$ Hz, 0.02 H, -SeCH = CHCO), 4.25-4.03 (m, 4H, -POC H_2CH_3 , -CO₂C H_2CH_3), 1.34 (t, ${}^3J_{HH} = 7.11$ Hz, 6H, -POCH₂C H_3), 1.28 (t, ${}^3J_{HH} = 7.14$ Hz, 3H, -CO₂C H_2CH_3); ¹³C NMR (75.5 MHz, CDCl₃, δ , ppm): 166.7, 144.1, 119.6 (d, $J_{CP} = 6.4$ Hz), 64.9 (d, $J_{CP} = 5.6$ Hz), 60.9, 15.6(d, $J_{CP} = 8.4$ Hz), 14.3; ³¹P NMR (121.5 MHz, CDCl₃, δ , ppm): 88.6 ($J_{PSe} = 900.9$, 422.6 Hz); ⁷⁷Se NMR (57.2 MHz, CDCl₃, δ , ppm): 497.7 (d, $J_{SeP} = 422.3$ Hz), -111.1 (d, $J_{SeP} = 904.0$ Hz). IR (KBr, cm⁻¹): 1726 (v_{CO}). MALDI-TOF: 401.41 [M+Na]⁺.