Solvothermal syntheses, characterizations and properties of three transition-metal (Ni^{II}, Co^{II}) imino-carboxylate-diphosphonates

Kuirong Ma,^{*a,b*} Jianing Xu, ^{*a*} Lirong Zhang, ^{*a*} Jing Shi, ^{*a*} Daojun Zhang, ^{*a*} Yulan Zhu, ^{*b*} Yong Fan, ^{*a*}* Tianyong Song^{*a*}*

[a] State Key Laboratory of Inorgnic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin / P. R. China, E-mail: <u>mrfy@jlu.edu.cn</u>.
 [b] Jiangsu key laboratory for chemistry of low-dimensional materials, Department of Chemistry, Huaiyin Teachers College, Huaian, Jiangsu / P. R. China.

Fig. SA1. One-dimensional $O-H\cdots O$ hydrogen-bonded chain of 1 down the *c* axis. State the Ni-centred octahedra are shaded in green and that the hydrogen atoms are in white. Hydrogen bonds are drawn as dotted blue lines.

Fig. SA2. Three-dimensional O–H…N (NH₄⁺) hydrogen-bonded network of 1 down the *x* axis. Hydrogen bonds are drawn as dotted blue lines. 1,3-PDA cations are omitted for clarity.

Fig. SA3 One-dimensional $O-H\cdots O$ hydrogen-bonded chain in the crystal structure of **2** down the *b* axis. Hydrogen bonds are drawn as dotted blue lines. State the Ni-centred octahedra are shaded in green and that the hydrogen atoms are in white.

Fig. SA4 Two-dimensional O–H…O hydrogen-bonded network in the crystal structure of **2** in the *ac* plane. Hydrogen bonds are drawn as dotted blue lines.

Fig. SA5. Two-dimensional network built from water chains of 2. Hydrogen bonds are drawn as dotted blue lines.

Fig. SA6 One-dimensional O–H…O hydrogen-bonded chain in the crystal structure of **3** down the *b* axis. Hydrogen bonds are drawn as dotted blue lines. State the Co-centred octahedra are shaded in green and that the hydrogen atoms are in white.

Fig. SA7 Two-dimensional O–H…O hydrogen-bonded network in the crystal structure of **3** in the *ab* plane. Lattice waters are omitted for clarity. Hydrogen bonds are drawn as dotted blue lines.

Fig. SA8 Two-dimensional O–H…O hydrogen-bonded network in the crystal structure of **3** in the *bc* plane. Lattice waters are omitted for clarity. Hydrogen bonds are drawn as dotted blue lines.

Fig. SB1 Experimental and simulated powder X-ray diffraction patterns of compound 1.

Fig. SB2 Experimental and simulated powder X-ray diffraction patterns of compound 2.

Fig. SB3 Experimental and simulated powder X-ray diffraction patterns of compound 3.

Fig. SC1 FTIR spectrum of the compound 1.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Fig. SC2 FTIR spectrum of the compound 2.

Fig. SC3 FTIR spectrum of the compound 3.

Fig. SD TGA curves of compounds 1–3.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Table S1.	Selected Bond Lengths [Å] and Angles [°] of Compounds 1–3.

Compound 1							
Ni(1)-O(1) ^{#1}	2.037(2)	Ni(1)-O(9)	2.102(2)	P(1)-O(1)	1.534(2)	P(2)-O(4)	1.537(2)
Ni(1)-O(1)	2.094(2)	Ni(1)-N(1)	2.098(2)	P(1)-O(2)	1.521(2)	P(2)-O(5)	1.518(2)
Ni(1)-O(4)	2.043(2)	P(1)-C(1)	1.831(2)	P(1)-O(3)	1.510(2)	P(2)-O(6)	1.518(2)
Ni(1)-O(7)	2.051(2)	P(2)-C(2)	1.837(2)	O(4)-Ni(1)-N(1)	84.27(6)	O(1)-P(1)-C(1)	102.33(9)
O(1) ^{#1} -Ni(1)-O(4)	103.81(6)	O(7)-Ni(1)-N(1)	84.44(7)	O(3)-P(1)-O(1)	112.48(9)	O(3)-P(1)-O(2)	112.61(9)
O(1) ^{#1} -Ni(1)-O(7)	86.65(7)	O(1)-Ni(1)-N(1)	87.70(6)	O(2)-P(1)-O(1)	111.98(9)	O(6)-P(2)-O(4)	111.61(1)
O(4)-Ni(1)-O(7)	94.05(7)	O(1) ^{#1} -Ni(1)-O(9)	88.75(7)	O(3)-P(1)-C(1)	111.21(1)	C(3)-N(1)-Ni(1)	105.25(1)
O(1) ^{#1} -Ni(1)-O(1)	84.55(6)	O(4)-Ni(1)-O(9)	90.45(7)	O(2)-P(1)-C(1)	105.53(1)	C(1)-N(1)-Ni(1)	107.68(1)
O(4)-Ni(1)-O(1)	171.48(6)	O(7)-Ni(1)-O(9)	174.22(7)	P(2)-O(4)-Ni(1)	117.53(9)	C(2)-N(1)-Ni(1)	108.61(1)
O(7)-Ni(1)-O(1)	88.00(6)	O(1)-Ni(1)-O(9)	88.07(7)	Ni(1) ^{#1} -O(1)-Ni(1)	95.45(6)	P(1)-O(1)-Ni(1) ^{#1}	146.66(9)
O(1) ^{#1} -Ni(1)-N(1)	168.39(6)	N(1)-Ni(1)-O(9)	99.64(7)	C(4)-O(7)-Ni(1)	113.85(1)	P(1)-O(1)-Ni(1)	115.71(8)
						O(6)-P(2)-O(5)	113.66(1)
Compound 2							
Ni(1)-O(1)	2.038(2)	Ni(1)-O(10)	2.115(2)	P(1)-O(1)	1.544(2)	P(2)-O(4)	1.539(2)
Ni(1)-O(4)	2.042(2)	Ni(1)-N(1)	2.125(2)	P(1)-O(2)	1.517(2)	P(2)-O(5)	1.522(2)
Ni(1)-O(7)	2.055(2)	P(1)-C(1)	1.828(3)	P(1)-O(3)	1.524(2)	P(2)-O(6)	1.517(2)
Ni(1)-O(9)	2.086(2)	P(2)-C(2)	1.828(3)				
O(7)-Ni(1)-O(10)	178.23(8)	O(9)-Ni(1)-N(1)	173.76(8)	O(2)-P(1)-O(1)	111.84(1)	O(5)-P(2)-O(4)	113.67(1)
O(7)-Ni(1)-O(9)	90.43(8)	O(1)-Ni(1)-N(1)	85.82(7)	O(3)-P(1)-O(1)	111.59(1)	P(1)-O(1)-Ni(1)	116.17(1)
O(10)-Ni(1)-O(9)	91.33(8)	O(7)-Ni(1)-O(4)	92.34(8)	O(2)-P(1)-C(1)	109.33(1)	P(2)-O(4)-Ni(1)	113.92(1)
O(7)-Ni(1)-O(1)	92.69(8)	O(10)-Ni(1)-O(4)	87.46(8)	O(3)-P(1)-C(1)	106.75(1)	C(4)-O(7)-Ni(1)	115.03(2)
O(10)-Ni(1)-O(1)	87.28(8)	O(9)-Ni(1)-O(4)	92.04(8)	O(1)-P(1)-C(1)	103.72(1)	C(3)-N(1)-Ni(1)	107.03(2)
O(9)-Ni(1)-O(1)	95.59(8)	O(1)-Ni(1)-O(4)	170.83(7)	O(6)-P(2)-O(5)	112.71(1)	C(1)-N(1)-Ni(1)	106.53(1)
O(7)-Ni(1)-N(1)	83.42(8)	N(1)-Ni(1)-O(4)	87.15(7)	O(6)-P(2)-O(4)	111.47(1)	C(2)-N(1)-Ni(1)	107.89(2)
O(10)-Ni(1)-N(1)	94.81(8)	O(2)-P(1)-O(3)	113.04(1)				
\Compound 3							
Co(1)-O(1)	2.084(2)	Co(1)-O(6)	2.128(2)	P(1)-O(3)	1.521(2)	P(2)-O(4)	1.508(2)
Co(1)-O(2)	2.051(2)	Co(1)-N(1)	2.183(2)	P(1)-O(8)	1.539(2)	P(2)-O(6)	1.528(2)
Co(1)-O(3)	2.115(2)	P(2)-C(1)	1.823(2)	P(1)-O(9)	1.496(2)	P(2)-O(7)	1.543(2)
Co(1)-O(5)	2.082(2)	P(1)-C(2)	1.824(2)				
O(2)-Co(1)-O(5)	91.50(8)	O(5)-Co(1)-O(6)	93.04(8)	O(6)-Co(1)-N(1)	84.21(7)	C(3)-O(2)-Co(1)	116.33(1)
O(2)-Co(1)-O(1)	179.01(8)	O(1)-Co(1)-O(6)	92.16(8)	O(9)-P(1)-O(3)	113.96(1)	P(1)-O(3)-Co(1)	116.10(9)
O(5)-Co(1)-O(1)	88.46(9)	O(3)-Co(1)-O(6)	169.57(6)	O(9)-P(1)-O(8)	112.42(1)	C(2)-N(1)-Co(1)	106.95(1)
O(2)-Co(1)-O(3)	89.66(8)	O(2)-Co(1)-N(1)	81.97(7)	O(3)-P(1)-O(8)	111.38(1)	C(1)-N(1)-Co(1)	106.01(1)
O(5)-Co(1)-O(3)	97.32(8)	O(5)-Co(1)-N(1)	172.95(8)	O(4)-P(2)-O(6)	113.27(1)	C(4)-N(1)-Co(1)	106.95(1)
O(1)-Co(1)-O(3)	89.37(8)	O(1)-Co(1)-N(1)	98.12(8)	O(4)-P(2)-O(7)	111.77(1)	P(2)-O(6)-Co(1)	116.18(9)
O(2)-Co(1)-O(6)	88.83(7)	O(3)-Co(1)-N(1)	85.36(7)	O(6)-P(2)-O(7)	112.15(1)		

Symmetry transformations used to generate equivalent atoms:

[#]1 -x+1, -y+1, -z [#]2 -x+1/2, y-1/2, z

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Compound 1				
N(2)-H(4)O(3)#1	0.89	1.94	2.821(2)	171.7
N(2)-H(5)O(6)#3	0.89	1.88	2.752(2)	165.6
N(2)-H(6)O(4)	0.89	2.25	2.894(2)	129.1
N(2)-H(6)O(5)	0.89	2.39	3.190(3)	149.1
O(9)-H(1)O(7)#1	0.74(3)	2.14(3)	2.849(2)	161(3)
O(9)-H(2)O(8)#4	0.93(4)	1.81(4)	2.732(3)	171(3)
N(3)-H(7)O(2)#2	0.85(3)	2.03(3)	2.879(2)	177(3)
N(3)-H(8)O(2)	0.99(3)	1.95(3)	2.833(2)	147(3)
N(3)-H(9)O(4)#4	0.88(3)	1.84(3)	2.696(2)	164(3)
N(3)-H(10)O(5)#5	1.00(3)	1.74(3)	2.740(2)	175(3)
N(4)-H(11)O(3)#1	0.87(3)	1.97(3)	2.832(2)	169(3)
N(4)-H(12)O(2)#6	0.86(3)	1.96(3)	2.809(2)	169(3)
N(4)-H(13)O(6)#7	0.95(4)	1.86(4)	2.799(2)	170(3)
N(4)-H(14)O(5)#2	0.90(4)	2.05(4)	2.878(2)	152(3)
Compound 2				
O(9)-H(9A)O(6)#1	0.880(2)	1.86(2)	2.730(3)	168(4)
O(9)-H(9B)O(3)#2	0.861(2)	1.92(2)	2.770(3)	168(4)
O(10)-H(10A)O(7W)#3	0.884(2)	1.761(2)	2.642(3)	174(4)
O(10)-H(10B)O(1)#2	0.880(2)	1.84(2)	2.714(3)	175(4)
O(1W)-H(1A)O(6)#4	0.92(2)	1.80(2)	2.709(4)	171(5)
O(1W)-H(1B)O(3W)#5	0.91(2)	2.20(3)	3.035(6)	152(5)
O(2W)-H(2A)O(2)	0.911(2)	1.85(2)	2.735(4)	162(4)
O(3W)-H(3A)O(8)	0.940(2)	1.79(2)	2.727(4)	177(5)
O(3W)-H(3B)O(1W)#4	0.932(2)	2.35(3)	3.276(8)	165(5)
O(3W)-H(3C)O(3)#4	0.922(2)	1.82(2)	2.720(4)	163(4)
O(4W)-H(4A)O(2)	0.880(2)	1.81(2)	2.685(3)	177(5)
O(4W)-H(4B)O(5)#6	0.89(2)	1.92(2)	2.801(4)	179(5)
O(5W)-H(5B)O(8)#7	0.969(2)	2.39(3)	3.206(4)	142(4)
O(5W)-H(5B)O(2W)#7	0.969(2)	2.38(4)	3.055(4)	126(3)
O(5W)-H(5C)O(3)#2	0.954(2)	1.94(2)	2.882(3)	170(4)
O(6W)-H(6A)O(1)	0.958(2)	1.88(2)	2.824(3)	170(4)
O(6W)-H(6B)O(5)#6	0.96(2)	2.10(3)	3.007(3)	156(4)
O(6W)-H(6C)O(4)#1	0.949(2)	1.91(2)	2.848(3)	172(4)
O(7W)-H(7A)O(8)#7	0.891(2)	1.86(2)	2.736(3)	166(3)
O(7W)-H(7A)O(7)#7	0.891(2)	2.53(3)	3.221(3)	135(3)
O(7W)-H(7B)O(5)	0.910(2)	1.80(2)	2.705(3)	171(4)
Compound 3				
O(5)-H(10)O(11)#5	0.76(4)	1.98(4)	2.718(3)	166(4)
O(5)-H(11)O(4)#3	0.81(4)	1.93(4)	2.725(3)	168(4)
O(1)-H(7)O(9)#4	0.877(2)	1.80(2)	2.666(3)	167(3)
O(1)-H(8)O(6)#3	0.864(2)	1.89(2)	2.725(3)	164(3)
O(12W)-H(16)O(7)#2	0.99(4)	1.88(4)	2.855(3)	169(3)
O(13W)-H(19)O(13W)#1	0.81(3)	2.01(3)	2.818(7)	178(4)

 Table S2.
 Hydrogen Bonds [Å] and Angles [°] for Compounds 1–3.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Symmetry transformations used to generate equivalent atoms:

Compound **3.** #1 -x+2, -y+1, -z #2 x+1, y, z #3 -x+1, -y, -z #4 -x+1, -y+1, -z #5 -x+1, -y, -z+1