Electronic Supplementary Information revised version

Weak acid triggers the ring opening of an otherwise long-lived triangle terthiazole closed isomer

Christophe Coudret, Tetsuya Nakagawa, Tsuyoshi Kawai, Jean-Claude Micheau

pages	schedule
S2:	I - NMR Titration of the open form by TFA in CD ₃ CN
S 3:	II - Assignation of the aromatic protons of open form in the presence of TFA in CD ₃ CN (2D-COSY 1 H)
S4:	III - 1 H - 19 F HOESY (400 MHz, mixing time 0.5s) of open form in the presence of an excess of TFA (>60eq) in CD ₃ CN
S5:	IV - Bleaching kinetics of the closed isomer C in the presence of TFA via Initial Slope v_0 analysis
S 6:	V - Association constant from NMR titration of the open isomer by TFA in acetonitrile.
S8:	VI - DFT calculated energies in gas and acetonitrile phases
S 9 :	VII - Bond lengths variation (in angstrom) by DFT Calculations
S10:	VIII - TD-DFT calculation of the UV–visible spectrum of the CH ⁺ species in liquid phase, no counter anion.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

I- NMR Titration of the Open form by TFA in CD₃CN

Fig S1 : NMR titration of Open triangle terthiazole by TFA ; $[O] \approx 3.10^{-3}$ M; [TFA] from 9e-3 to 0.3M

II- Assignation of the aromatic protons of Open form in the presence of TFA in CD₃CN

(2D-COSY¹H)

Fig S2: Open form 2D-COSY spectrum, Excess TFA (> **60 eq**) **in CD₃CN** offset: expansion of the aromatic zone showing the correlation of the *ortho* phenyl hydrogen H₀1,2,3 to other signals. H₀1 is correlated to only one signal (3H) while H₀2 and3 are correlated to two signals (integration resp. 2 and 1).

Scheme S3: 2D-COSY proton assignation : at this stage, no ambiguous assignation can be made to identify $H_01,2,3$ and $H_0^{A,B,C}$ as well as for Me1 and Me2

III- ¹H -¹⁹F HOESY (400 MHz, mixing time 0.5s) of Open form in the presence of an excess of TFA (>60eq)

From the slightly higher intensity of the H_o2 correlation spot, a putative assignation can be given as : ring I \approx ring C, ring II \approx ring A and ring III \approx ring B. Methyl groups would then be Me1 \approx Me(C), and Me2 \approx Me(A).

IV-Bleaching kinetics of the closed isomer C in the presence of TFA via Initial Slope $v_{0} \\ analysis$

The kinetic scheme is the following:

C + TFA ← → {C.TFA}
$$(K^{C}_{eq})$$
 $K^{C}_{eq} = [{C.TFA}] / [C][TFA]$
{C.TFA} → O + TFA (k) v = d[O]/dt = k[{C.TFA}]

with K_{eq}^{C} the association constant of the closed terthiazole C with TFA and k the rate constant of the opening process.

At the very beginning of the reaction, one can neglect the isomerization reaction so $[C] \approx ([C]_0 - [\{C.TFA\}])$. Keeping in mind that when $[TFA] \rightarrow \infty$; $v \rightarrow V_{max} = k [C]_0$ and taking in account that the trifluoroacetic acid is always in large excess so that $[TFA] \approx [TFA]_0$, then:

 $\mathbf{V}_{0} = \mathbf{V}_{\max} K^{C}_{eq} [\text{TFA}] / (K^{C}_{eq} [\text{TFA}] + 1) = \mathbf{V}_{\max} K^{C}_{eq} Eq [C]_{0} / (K^{C}_{eq} Eq [C]_{0} + 1),$

with $Eq = [TFA]_0 / [C]_0$ number of equivalent of acid added to the solution.

In double reciprocal, it becomes:

 $1/v = (1/V_{max}) (1/(K_{eq}^{C} Eq [C]_{0}) + 1)$

Thus a plot of $1/v_0 vs. 1/Eq$ must give a straight line with $slope = (1/(V_{max} K^C_{eq} [C]_0))$ and $intercept = 1/V_{max}$, from which one can extract the association constant $K^C_{eq} = (intercept/slope)/[C]_0$ and the rate constant $k = 1/(intercept)[C]_0$.

V- Association constant from NMR titration of the open isomer by TFA in ACN (acetonitrile).

An average chemical shift δ deriving from δ_O , $\delta_{\{O,TFA\}}$ and α , respectively the chemical shift of the free open dye O, the chemical shift and the fraction of complexed open dye {O.TFA} is introduced for each signal:

$$\delta = \alpha \delta_{\text{{O.TFA}}} + (1 - \alpha) \delta_{\text{O}} = \alpha (\delta_{\text{{O.TFA}}} - \delta_{\text{O}}) + \delta_{\text{O}}, \text{ so } 1/\alpha = (\delta_{\text{{O.TFA}}} - \delta_{\text{O}}) / (\delta - \delta_{\text{O}})$$

Taking in account that the trifluoroacetic acid is always in large excess, the association constant can be rewritten as

$$[{O.TFA}]/([O]_0 - [{O.TFA}]) = K^{O}_{eq}[TFA]_0 = \alpha/(1 - \alpha), \text{ or } 1/\alpha = 1 + 1/K^{O}_{eq}[TFA]_0$$

Thus in a double reciprocal plot of $1/(\delta - \delta_0)$ vs. $1/[TFA]_0$, one should obtain a straight line with $(slope) = 1/(K^{O}_{eq}(\delta_{\{OTFA\}} - \delta_0))$ and $(intercept), 1/(\delta_{\{OTFA\}} - \delta_0)$ since

$$\left(\delta_{\text{{OTFA}}} - \delta_{\text{O}}\right) / (\delta - \delta_{\text{O}}) = 1 + 1 / K^{O}_{eq} [\text{TFA}]_{0},$$

the association constant K_{eq}^{O} being given by the ratio (*intercept*)/(*slope*). Four signals are easily followed during the titration and were considered for the association constant determination : H_o2, H_o3, Me1 and Me2.

Figure S5: Linearization of the data according to the previous formula giving rise to K_{eq}^{o} estimation. [O] $\approx 3.10^{-3}$ M; [TFA] from 1e-2 to 0.1M. From top to bottom : "aromatic protons" : H₀2 & H₀3 and "methyl protons": Me1and Me2.

Supplementary Material (ESI) for New Journal of Chemistry
This journal is (c) The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2009

Intercept	slope	K^{O}_{eq} (M ⁻¹)
-0.885	-0.537	1.65
-0.689	-0.150	4.6
2.48	0.639	3.9
5.26	0.847	6.2
	Intercept -0.885 -0.689 2.48 5.26	Intercept slope -0.885 -0.537 -0.689 -0.150 2.48 0.639 5.26 0.847

Table S1: Analysis of the linearization for the 4 selected signals

An average value of $K^{O}_{eq} \approx 4 \pm 2 \text{ M}^{-1}$ was adopted.

VI-DFT calculated energies in hartree for neutral and monoprotonated forms closed & open (phenyl groups not mentioned for clarity)

Energies calculated *in vacuo* and corrected for the effect of acetonitrile (CH₃CN), with a dielectric constant of 36.64, by using the polarizable continuum model (PCM) of solvation.

VII- Bond lengths variation (in angstrom) by DFT Calculations

See text for computational details.

A-Photoactive core (gas phase)

Bond	О	С	OH^+	CH^+	C-O	CH^+-OH^+
l_1	1.37679	1.5456	1.37854	1.53857	0.16881	0.16003
l_2	1.47989	1.37396	1.46427	1.36513	-0.10593	-0.09914
l_3	1.38226	1.46193	1.37546	1.44146	0.07967	0.066
l_4	1.46631	1.35954	1.45749	1.35934	-0.10677	-0.09815
1_{5}	1.37931	1.54443	1.3872	1.54957	0.16512	0.16237
l_6	3.69934	1.54549	3.72035	1.5521	-2.15385	-2.16825

B- Weak dependence of bond lengths with solvent

medium	l_1	l_2	l_3	l_4	l_5	l_6
C (gas phase)	1.54560	1.37396	1.46193	1.35954	1.54443	1.54549
C (PCM)	1.54516	1.37396	1.46177	1.35873	1.54240	1.54619

C- Central "thiazole ring" of the closed compound

(nothing) H^+ I_c I_a R^+ I_c I_e R^+ $R^ R^ R^-$				
Bond	С	CH^+	CH ⁺ -C	(CH ⁺ -CH)/C (%)
la	1.7454	1.81098	0.06558	1,0
l_b	1.339	1.29328	-0.04572	3,5
l_{c}	1.39651	1.38244	-0.01407	-3,6
l_3	1.44146	1.46193	0.02047	1,1
l_{e}	1.77897	1.7594	-0.01957	-1,4

VIII- TD-DFT calculation of the UV-visible spectrum for the CH⁺ species in liquid phase, no counter anion.

Excited State	[nm] (Oscillator Strength)	Assignment
1	723 (0.29)	HOMO > LUMO
2	506 (0.32)	HOMO > LUMO+1
3	398 (0.076)	HOMO-1 > LUMO
4	382 (0.42)	HOMO> LUMO+2
5	373 (0.33)	HOMO-2 > LUMO
6	365 (0.33)	HOMO-3 > LUMO
7	358 (0.058)	HOMO-4 > LUMO
8	355 (0.023)	HOMO-5 > LUMO

