Electronic Supplementary Information

Synthesis of Mesoporous LaPO₄ Nanostructures with Controllable Morphologies

Zhanli Chai,^{*a,b*} Li Gao,^{*a*} Cheng Wang, ^{* *a*} Hongjie Zhang,^{*a*} Rongkun Zheng,^{*c*} Paul A. Webley,^{*b*} and Huanting Wang^{**b*}

^{*a*} State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^b Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia

^c Australian Key Center for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 Australia

Preparation of La-TOPO

10.0 mmol of La(NO₃)₃·nH₂O was dissolved in 10.0 ml of deioned water. After dissolution, lanthanum ions were extracted from the La(NO₃)₃·nH₂O aqueous solution by 3.89 g of TOPO (~10 mmol). To reduce the viscosity of the organic phase containing TOPO and extracted lanthanum species, 7.0 ml of cyclohexane was added to dilute the organic phase, facilitating the separation of two phases and later transference by syringe. The extraction yield of lanthanum ions was about 60.0% in TOPO, and the final concentration of lanthanum was around 0.35 mol L⁻¹ in the TOPO-cyclohexane (denoted La-TOPO).

Preparation of H₃PO₄-EG

10.0 ml of 85% H_3PO_4 solution was mixed with 10.0 ml of EG, followed by stirring and heating at 100 °C for 10 h to remove water. As a result, a clear solution with a high concentration of around 7.0 mol L⁻¹ was obtained (denoted H_3PO_4 -EG).

Synthesis of Eu³⁺ doped and Ce³⁺/Tb³⁺ codoped LaPO₄ nanostructures

*LaPO*₄:*Ce*,*Tb*: The synthetic procedure for the LaPO₄:Ce,Tb nanostructures was the same as that used for the synthesis of undoped LaPO₄ nanostructures, except that 1.14 ml of La-TOPO (0.35 M, ~0.4 mmol), 1.67 ml of Ce-TOPO (0.27 M, ~0.45 mmol), and 0.40 ml of Tb-TOPO (0.38 M, ~0.15 mmol) were used as the precursors in EG.

*LaPO*₄:*Eu*: The synthetic procedure for the LaPO₄:*Eu* nanostructures was also same as that used for the synthesis of undoped LaPO₄ nanostructures, except that 1.14 ml of La-TOPO (0.35 M, ~0.4 mmol) and 0.08 ml of Eu-TOPO (0.25 M, ~0.02 mmol) were used as the precursors in EG.

Fig. S1 SEM images of the obtained $LaPO_4$ nanostructures in a typical synthesis with different reaction time. a) 10 min b) 3 h

Fig. S2 SEM images of the obtained LaPO₄ nanostructures in a typical synthesis with different reaction temperature. a) 120 $^{\circ}$ C c) 180 $^{\circ}$ C

Fig. S3 XRD patterns of LaPO₄ nanostructures obtained in a typical synthesis with different molar ratio of La^{3+}/H_3PO_4 . (a) 1/2 (b) 1/20 (c) 1/100 (d) 1/200.

Fig. S4 SEM images obtained LaPO₄ nanostructures in a typical synthesis with different molar ratio of La^{3+}/H_3PO_4 : (a) 5/1 (b) 1/4 (c) 1/10 (d) 1/30 (e) 1/40 (f) 1/60.

Fig. S5 Fourier Transform Infrared spectra (FT-IR) of (a) as-obtained LaPO₄ nanostructures in a typical synthesis and (b) LaPO₄ nanoparticles prepared by adding phosphate acid (85%) into La(NO₃)₃ aqueous solution at room temperature.

Fig. S6 XRD patterns of doped LaPO₄ nanostructures obtained in a typical synthesis. a) LaPO₄:Eu, b) LaPO₄:Ce,Tb.

Fig. S7 SEM images of LaPO₄:Ce,Tb nanostructures synthesized in a typical synthesis with different molar ratio of La^{3+}/H_3PO_4 : a) 1/2 b) 1/20 c) 1/100 d) 1/200

Fig. S8 Room-temperature excitation and emission spectra of LaPO₄:Ce,Tb nanostructures synthesized in a typical synthesis with different molar ratio of La³⁺/H₃PO₄ a) 1/2 b) 1/20 c) 1/100 d) 1/200 ($\lambda_{ex} = 273$ nm and $\lambda_{em} = 546$ nm).