SUPPORTING INFORMATION

Photo-switch and INHIBIT Logic Gate Based on two Pyrazolone

thiosemicarbazone Derivants

Xiangyun Xie^a, Lang Liu^a, Dianzeng Jia^{*a}, Jixi Guo^a, Dongling Wu^a, Xiaolin Xie^b

^aInstitute of Applied Chemistry, Xinjiang University, Urumqi 830046, P. R.China

^bNational Anti-counterfeit Engineering Research Center, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

E-mail: jdz@xju.edu.cn

Table of Contents:

Title	page.	S 1
Spec	troscopy	
•	Synthetic details of 2	S2
•	¹ H NMR Spectrum of 1	S 3
۲	¹ H NMR Spectrum of 2	S4
•	Mass Spectra of 1 and 2	S5
•	First-order kinetic plots of photoisomerization reaction of 1 and 2	S6
X-R	ay Crystallography	
•	X-ray crystal structure determination	S7
•	Molecular structure of 1	S 8
•	Molecular structure of 2	S9
•	Crystal packing in unit cell along c axis for 1 and 2	S10
•	Crystal data and structure refinement details for compounds 1 and 2	S11
•	Selected bond lengths (Å) and angles (°) for 1 and 2	S12
•	Intra- and intermolecular hydrogen bonding data in keto-form crystals for 1 and 2	S13
The	pretical Calculation	
•	Computational details	S14
•	Computational energy in the gas phase and solution	S15
Abs	orption Spectroscopy	
•	Changes in absorbance of 1 and 2 with only one input	S16-S17
•	Changes in absorbance of 1 and 2 with OH^- , Zn^{2+} and H^+	S18-S19

Spectroscopy

Synthesis of 1-phenyl-3-methyl-4-(2-fluorobenzal)-5-hydroxypyrazole 4-ethylthiosemicarbazone(2)

1–Phenyl–3–methyl–4–(2–fluorobenzal)–5–hydroxypyrazole 4–ethylthiosemicarbazone was synthesized by refluxing PM2FHP (5 mmol) and N(4)–ethyl–3–thiosemicarbazide (5 mmol) in 30 ml of methanol at the presence of glacial acetic acid (1 ml) at 70 °C for ca. 3 h under magnetic stirring. After cooling down to room temperature in the dark, white powders were obtained. Then the resulting mixture was filtered, the white product was obtained in 90.07 % yield. m. p. 217.8–219.2 °C. The compound produced the crystals suitable for X–ray analysis in the methanol solution. The spectroscopic data are as follows. IR (ν /cm⁻¹): (a. the white powder before irradiation): 3304 ν (N–H), 3065–2593 ν (O–H), 1633 ν (C=N), 1555, 1496 ν (phenyl), 1408, 1369 ν (pyrazolone–ring), 1229 ν (C=S). (b the yellow powder after irradiation): 3304, ν (N–H), 1664 ν (C=O), 1633 ν (C=N), 1555, 1496 ν (phenyl), 1408, 1369 ν (pyrazolone–ring), 1229 ν (C=S). MS, *m/z*: [M+1] = 398.1 (formula weight: 397.47). ¹H NMR (DMSO–*d*₀) (δ , ppm): 1.144–1.109 (3H, CH₂CH₃), 1.659 (2H, CH₂CH₃), 3.612–3.544 (3H Pz–CH₃), 7.176–7.466 (5H, Ph), 7.768–7.513 (5H, C₆H₄F+N4–H), 7.929 (1H, N5–H), 8.266 (1H, Pz–NH).

Figure S2. ¹H NMR spectra of **2** in DMSO- d_6

Figure S3. MS spectra of 1 and 2.

Figure S4. First-order kinetic plots of photoisomerization reactions of **1** and **2** induced by 365 nm light at room temperature.

X-Ray Crystallography

X-ray crystal structure determination:

Single crystals of **1** and **2** suitable for X-ray crystallographic work were grown by slow evaporation of their methanol solution at room temperature. The crystallographic data were collected on an imaging plate system (Rigaku R-AXIS SPIDER) with a graphite monochromatized Mo *Ka* radiation ($\lambda = 0.71073$ Å). The crystal was mounted with grease on the top of a glass fiber and cooled at 153 *K* in a liquid nitrogen stream. Cell constants and orientation matrix for data collection were obtained by least-squares refinement of the diffraction data from reflections in the range 3.06 to 25.25 ° for **1** (3.12 to 27.48 ° for **2**). Crystal structures were solved by direct methods and refined on F^2 by full-matrix least-squares methods with the *SHELXTL-97* program. All non-H atoms were refined anisotropically. The H atoms on oxygen atom and nitrogen atoms were located from the Fourier maps, the restraints in each of the refinements were used to restraint the H atoms. And all of the other H atoms were placed in geometrically idealized positions. The disordered part with small occupancy was refined isotropically and the bond lengths and geometry were restrained in the refinement.

Figure S5. Molecular structure of 1 (keto form, II) with atom numberings (30% probability ellipsoids).

Figure S6. Molecular structure of 2 (keto form, II) with atom numberings (30% probability ellipsoids)

Figure S7. Crystal packing in unit cell along c axis for 1(A) and 2(B).

Compounds	1 (keto form, II)	2 (keto form, II)	
Empirical formula	$C_{19.50}H_{20}N_5O_{1.50}SF$	$C_{20}H_{20}N_5OSF$	
FW	399.46	397.47	
Temperature/K	293(2)	153(2)	
Wavelength/ Å	0.71073	0.71073	
Crystal system	Orthorhombic	Orthorhombic	
Space group	Pbcn	Pbcn	
Unit cell dimensions	$a = 13.4486(8)$ Å $\alpha = 90^{\circ}$	$a = 13.9254(3)$ Å $\alpha = 90^{\circ}$	
	$b = 13.3331(9) \text{ Å} \qquad \beta = 90 \circ$	$b = 13.0617(3)$ Å $\beta = 90^{\circ}$	
	$c = 21.6910(12)$ Å $\gamma = 90^{\circ}$	$c = 21.3133(4)$ Å $\gamma = 90^{\circ}$	
Volume/A ³	3889.4(4)	3876.66(14)	
Ζ	8	8	
Density (Calculated)/ Mg/m ³	1.364	1.362	
Absorption coefficient/mm ⁻¹	0.199 mm	0.197	
<i>F</i> (000)	1672	1664	
Crystal size	0.28 x 0.28 x 0.08 mm	0.60 x 0.57 x 0.40 mm	
Theta range for data collection/°	3.06 to 25.25	3.12 to 27.48	
Limiting indices	-13 ≤h≤16	-18≤h≤18	
	-16≤k≤15	-16≤k≤16	
	-26 <u>≤</u> 1 <u>≤</u> 25	-27 <u>≤</u> 1 <u>≤</u> 27	
Absorption correction	Empirical	Empirical	
Max. and min. transmission	0.9843 and 0.9464	0.9252 and 0.8908	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	3519 / 3 / 272	4443 / 3 / 269	
Reflections collected / unique	26179 / 3519 [<i>R</i> (int) = 0.0901]	34491 / 4443 [<i>R</i> (int) = 0.0256]	
GOF on F^2	0.999	1.000	
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0603, wR_2 = 0.1543$	$R_1 = 0.0334$, $wR_2 = 0.0909$	
R indices (all data)	$R_1 = 0.0973, wR_2 = 0.1748$	$R_1 = 0.0385, wR_2 = 0.0946$	
Extinction coefficient	0.0092(14)	0.0015(4)	
Largest diff. peak and hole	0.466 and -0.333 e Å ⁻³	0.375 and -0.219	

Table S1. Crystal data and structure refinement details for compounds 1 and 2

1 (keto form)		2 (keto form)		
Bond Lengths (Å)				
S-C(18)	1.697(3)	S-C(18)	1.7044(12)	
O(1)-C(7)	1.251(3)	O(1)-C(7)	1.2498(14)	
C(20)-O(2)#1	1.421(15)	N(1)-C(7)	1.3838(16)	
C(20)-O(2)	1.421(15)	N(2)-C(9)	1.3386(16)	
N(1)-C(7)	1.381(4)	N(4)-C(18)	1.3616(15)	
N(2)-C(9)	1.334(4)	N(5)-C(18)	1.3169(16)	
N(4)-C(18)	1.360(4)	N(3)-N(4)	1.3798(14)	
N(5)-C(18)	1.316(4)	C(7)-C(8)	1.4451(16)	
N(3)-N(4)	1.381(3)	C(8)-C(9)	1.3879(16)	
C(7)-C(8)	1.438(4)			
C(8)-C(9)	1.390(4)			
Bond angles(°)				
N(2)-N(1)-C(7)	108.2(2)	N(2)-N(1)-C(7)	109.09(9)	
N(2)-N(1)-C(6)	120.6(2)	N(2)-N(1)-C(6)	120.19(10)	
C(7)-N(1)-C(6)	129.2(3)	C(7)-N(1)-C(6)	128.62(10)	
C(9)-N(2)-N(1)	109.4(2)	C(9)-N(2)-N(1)	108.86(10)	
C(11)-N(3)-N(4)	117.5(2)	C(11)-N(3)-N(4)	117.21(10)	
C(18)-N(4)-N(3)	117.9(2)	C(18)-N(4)-N(3)	117.65(10)	
C(7)-C(8)-C(11)	128.2(2)	C(7)-C(8)-C(11)	128.08(10)	

Table S2. Selected bond lengths (Å) and angles (°) for 1 and 2

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y,-z+3/2

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
1				
N(4)-H(4N)…O(1)#1	0.864(10)	1.879(14)	2.704(3)	159(3)
N(2)-H(2N)…S#2	0.855(10)	2.410(11)	3.261(3)	174(3)
N(5)-H(5N)···O(1)#3	0.850(10)	2.310(2)	2.966(3)	134(3)
O(2)-H(2A) …S	0.820	2.810	3.524(12)	147.1
2				
N(4)-H(4N)…O	0.869(9)	1.869(10)	2.7118(13)	163.0(16)
N(2)-H(2N)…S#1	0.866(9)	2.345(10)	3.2057(11)	172.6(17)
N(5)-H(5N)···O(1)#2	0.863(9)	2.328(13)	3.0107(13)	136.2(14)
Symmetry codes: For 1	#1 - <i>x</i> +2, <i>y</i> ,- <i>z</i> +3/2	#2 -x+1,-y+1,-z+1	#3 -x+3/2,y+1/2,z	ŗ
For 2	#1 - <i>x</i> +1,- <i>y</i> +1,- <i>z</i> +1	#2 -x+3/2,y+1/2,z		

Table S3. Intra- and intermolecular hydrogen bonding data in keto-form crystals for 1 and 2.

Theoretical Calculation

Computational details: we emphasized molecular energy of keto and enol forms according to the results calculated at the B3LYP/6-31G* level, as implemented in the GAUSSIAN 03W¹ program package both in gas phase and in methanol solution. Full geometry optimizations have been performed on the basis of the structure data of the keto form along with analytic real vibrational frequencies in order to conform to the structure obtained as minima on the potential energy surface. The reactions described here took place in methanol solution because single crystals are obtained by evaporating its methanol solution. So the methanol is chosen to study the effect of the solvent on the relative energy order of the isomers. It is known that the use of optimized gas phase structures does not introduce large errors for solutes of limited conformational changes.² Estimation of the solvent effects on energies was carried out using the polarizable continuum model (PCM) method.³

- 1 Frisch, M. J. GAUSSIAN 03, Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2003. 13
- 2 a) Luque, F. J.; Negre, M. J.; Orozco, M. J. Phys. Chem. 1993, 97, 4386–4391. b) Luque, F. J.; Zhang, Y.; Alemn, C.; Bachs, M.; Gao, J.; Orozco, M. J. Phys. Chem. 1996, 100, 4269–4276;
- 3 a) Cammi, R.; Tomasi, J. J. Comput. Chem. 1995, 16, 1449–1458. b) Tomasi, J.; Bonaccorsi, R. Croat. Chem. Acta. 1992, 65, 29–54.

Table S4. Electronic energy (*E*), relative energy (ΔE), ZPE corrected energy (E_{corr}), Dipole moments in gas phase,

	1 (enol form)	1 (keto form)	2 (enol form)	2 (keto form)
<i>E</i> (a.u.)	-1581.840187	-1581.839647	-1621.156569	-1621.156144
$\Delta E(\text{kcal/mol})$	0.00	0.34	0.00	0.27
$E_{\rm corr}$ (a.u.)	-1581.490529	-1581.490122	-1620.778091	-1620.777764
Dipole moments (Debye)	5.23	9.28	5.13	9.22
E^{PCM} (a.u.)	-1581.865175	-1581.873474	-1621.181563	-1621.189458
$\Delta E^{\rm PCM}$ (kcal/mol)	5.21	0.00	4.95	0.00

electronin energy (E^{PCM}) , relative energy $(\varDelta E^{\text{PCM}})$ in methanol solution.

Absorption Spectroscopy

Changes in absorbance of 1 and 2 with only one input

Figure S8. (A) Changes in the absorption spectra of 1 (2×10^{-5} mol/l, CH₃OH) (a) none, (b) in presence of HCl (0.1 M), (c) in presence of NaOH(0.1 M), (e) in presence of ZnCl₂ (0.1 M).

Figure S9. (A) Changes in the absorption spectra of **2** (2×10^{-5} mol/l, CH₃OH) (a) none, (b) in presence of HCl (0.1 M), (c) in presence of NaOH(0.1 M), (e) in presence of ZnCl₂ (0.1 M).

Changes in absorbance of 1 and 2 with NaOH, ZnCl₂ and HCl

Figure S10. Absorption spectra of **1** (2×10^{-5} mol/l, CH₃OH) in presence of equimolar mixture HCl(0.1 M) and NaOH(0.1 M) (a), in presence of mixture ZnCl₂(0.1 M) and HCl(b), in presence of mixture NaOH and ZnCl₂(c) and in presence of mixture NaOH, ZnCl₂ and HCl(d).

Figure S11. Absorption spectra of **2** (2×10^{-5} mol/l, CH₃OH) in presence of equimolar mixture HCl (0.1 M) and NaOH(0.1 M) (a), in presence of mixture ZnCl₂(0.1 M) and HCl(b), in presence of mixture NaOH and ZnCl₂(c) and in presence of mixture NaOH, ZnCl₂ and HCl(d).