Electronic Supplementary Information

Ultrasound-Promoted Chiral Fluorescent Organogel

Yabing He, Zheng Bian,* Chuanqing Kang, Rizhe Jin, Lianxun Gao*

1. Gelation test toward typical organic fluids at room temperature.

Table S1. Gel-forming Abilities of (S)-1-7 in Various Solvents.^[a]

Solvents	(S) -1	(S) -2	(S) -3	(S) -4	(S) -5	(S) -6	(S) -7
<i>n</i> -Hexane	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Dichloromethane	S	S	S	S	S	S	S
Chloroform	S	S	S	S	S	S	S
Ethyl acetate	PG+G* ^[b]	С	С	С	S	С	С
Acetone	$PG^{[c]}+G^{*[b]}$	S	S	S	S	S	S
Tetrahydrofuran	S	S	S	S	S	S	S
Acetonitrile	Р	Ι	Ι	Ι	Ι	Ι	Ι
Benzene	Р	S	S	S	S	S	S
Toluene	PG ^[c] +G*	S	S	S	S	S	S
ethylbenzene	PG ^[c] +G*	S	S	S	S	S	S
Xylene	PG ^[c] +G*	S	S	S	S	S	S
1,3,5-Trimethylbenzene	PG ^[c] +G*	S	S	S	S	S	S
Tetrahydronaphthene	S	S	S	S	S	S	S
o-Dichlorobenzene	S	S	S	S	S	S	S
Chlorobenzene	S	S	S	S	S	S	S
DMF	S	S	S	S	S	S	S
Methanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Ethanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι
<i>i</i> -Propanol	Ι	Ι	Ι	Ι	Ι	Ι	Ι

[a] The concentration of solution is 5 wt% in general.

[b] The concentration of sonciated solution is 2.5 wt%.

[c] The partial gel is formed when standing at -10 °C for at least 6 hr.

I = almost insoluble; S = isotropic solution; P = precipitation; C = crystallization; PG = partial gel; G* = gel formed via ultrasound.

2. SEM images of (S)-1

Fig. S1 SEM image of xerogel from ethyl acetate (a) and toluene (b).

3. UV-vis absorption and fluorescence emission spectra of (S)-1 in various organic solvents

Table S2. Absorption Maxima and Extinction Coefficients of (S)-1 in Different Solvents.^[a]

Solvents	λ_{\max} (nm)	$\varepsilon (M^{-1}cm^{-1})$
<i>n</i> -Hexane	309.0	94400
Methylene chloride	313.0	104000
THF	314.0	115600
Ethyl acetate	311.0	116800
Toluene	314.0	104400
Acetonitrile	309.5	107200

[a] $c = 2.5 \times 10^{-6}$ M, room temperature.

Fig. S2 Fluorescence spectra of (S)-1 in different solvents (2.5 \times 10⁻⁶ M), λ_{ex} =320 nm. Both UV-Vis absorption and fluorescence spectra of (S)-1 show only a subtle solvent effect.

4. Comparison of UV-vis absorption and fluorescence emission spectra of (S)-1 and its model compound $\bf 8$

Fig. S3 Comparison of UV-vis absorption and emission of (*S*)-1 and its model compound 8 in dichloromethane $(2.5 \times 10^{-6} \text{ M})$. Note: The spectra are normalized for comparison.

5. Fluorescence spectra of (S)-1 in toluene at different concentration

Fig. S4 Fluorescence spectra of (*S*)-1 in toluene at different concentration (a) 2.5×10^{-3} M, (b) 2.5×10^{-4} M, (c) 2.5×10^{-5} M, (d) 2.5×10^{-6} M, (e) 2.5×10^{-7} M and (f) in thin film. excitation wavelength, λ_{ex} =320 nm.

Fig. S5 ESI-MS spectra of (S)-1 exhibit singly and doubly charged species. a: $[(1)+H]^+$, b: $[(1)+Na]^+$, c: $[(1)_3+Na_2]^{2+}$, d: $[(1)_2+H]^+$, e: $[(1)_2+Na]^+$.

7. Concentration-dependent ¹H NMR spectra of (S)-1 in CDCl₃ at 298 K.

Fig. S6 Concentration-dependent ¹H NMR spectra of (S)-1 in CDCl₃ at 298K.

8. Concentration- independent ¹H NMR spectra of (S)-1 in $[D_8]$ toluene at 298 K.

Fig. S7 Concentration-independent ¹H NMR spectra of (S)-1 in [D₈]toluene.

Fig. S8 Temperature-dependent ¹H NMR spectra of (S)-1 in [D₈]toluene. The chemical shifts of H3 and H9 evidently shift downfield upon increasing the temperature, indicative of the reduction of intermolecular π - π interactions.

(*S*)-7:

(S)-6:

10

11. The single crystal structures of model compound **8**, (*S*)-**2** and (*S*)-**4**

Table S3.	Crystal	data and	structure	refinement	for model	compound 8	. (S)-2 and ((S)-4	ļ
							2 \ -	,,	(-)	

.Compound	8	(S)- 2	(<i>S</i>)-4	
Empirical formula	C ₂₈ H ₂₂ N ₂ O	C ₅₆ H ₄₂ N ₄ O ₂	C ₇₆ H ₈₂ N ₄ O ₂	
Formula weight	402.48	802.94	1083.46	
Temperature	187(2) K	187(2) K	187(2) K	
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Orthorhombic	Triclinic	
space group	P2(1)/n	P2 ₁ 2 ₁ 2 ₁	P1	
	a = 7.6624(6) Å	a = 13.0290(18) Å	a = 7.8840(5) Å	
	<i>b</i> = 24.225 (2) Å	b = 19.014(3) Å	b = 24.1800(15) Å	
Unit call dimensions	c = 11.3419(10) Å	c = 34.024(5) Å	c = 26.8060(16) Å	
Unit cen dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 114.619(9)^{\circ}$	
	$\beta = 102.6110(10)^{\circ}$	$\beta = 90^{\circ}$	$\beta = 92.681(9)^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 96.014(10)^{\circ}$	
Volume, Z	2054.5(3) Å ³ , 4	8429(2) Å ³ , 8	4596.9(5) Å ³ , 3	
Calculated density	1.426 Mg/m^3	1.265 Mg/m ³	1.174 Mg/m ³	
Absorption coefficient	0.128 mm ⁻¹	0.077 mm^{-1}	0.0701 mm ⁻¹	
F(000)	902	6752	5238	
Crystal size	$0.30\times0.20\times0.15~mm$	$0.30\times0.21\times0.12~mm$	$0.4\times0.35\times0.28\ mm$	
θ range for data collection	1.68 to 26.03°	1.61 to 25.04°	1.50 to 26.03°	
	-9≤h≤8	-15≤h≤14	-8≤h≤9	
Limiting indices	-29≤k≤28	-21≤k≤22	-29≤k≤28	
	-10 <u>≤</u> 1 <u>≤</u> 14	-40 <u>≤</u> 1 <u>≤</u> 29	-33 <u>≤</u> 1 <u>≤</u> 30	
Reflections collected / unique	$11505 / 4031 [R_{int} = 0.0358]$	$43434 / 8100 [R_{int} = 0.0888]$	26057/17732 [R _{int} =0.0336]	
Completeness to theta	26.03, 99.4 %	25.00, 99.1 %	25.00, 98.6 %	
Refinement method	full-matrix least-squares on F^2	full-matrix least-squares on F^2	full-matrix least-squares on F^2	
Data / restraints / parameters	4031 / 0 / 281	8100 / 6 / 1104	17732 / 4 /2195	
Goodness-of-fit on F ²	1.029	1.024	0.955	
Final R indices, I>2sigma(I)	$R_1 = 0.0487; wR_2 = 0.0995$	$R_1 = 0.0866; wR_2 = 0.2166$	$R_1 = 0.0577, wR_2 = 0.1290$	
R indices (all data)	$R_1 = 0.0749; wR_2 = 0.1111$	$R_1 = 0.1441; wR_2 = 0.2625$	$R_1 = 0.0914$, $wR_2 = 0.1474$	
Largest diff. peak and hole	0.190 and -0.157 e.Å ⁻³	1.063 and -0.522 e.Å ⁻³	0.431/-0.306 e.Å ⁻³	
CCDC	664579	709732	709733	

It should be pointed out that the X-ray analyses for (*S*)-2 and (*S*)-4 only show the relative, not absolute stereochemistry. CCDC-664579, 709732-709733 contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.