Supporting Information

Anthracene-based open and macrocyclic receptors in flurometric detection of urea

Kumaresh Ghosh^{*}, Goutam Masanta

Table of contents:

Absorption and flourescence study of 1 -2	S2 – S4
UV Job's Plot	S4
Determination of binding constants	
References	S17

Absorption study of 1 -2 in CHCl₃

Fig. S1 UV spectra of the complex 1.thiourea ($c = 1 \ge 10^{-5}$ M) and its change of absorbance on dilution; (inset) plot of absorbance *vs.* concentration of the 1:1 complex of thiourea with 1.

Absorption study of 1 -2 in CH₃CN

Fig. S2 UV spectra of the complex 2.thiourea ($c = 1 \times 10^{-5}$ M) and its change of absorbance on dilution; (inset) plot of absorbance *vs.* concentration of the 1:1 complex of thiourea with 2.

Fig. S3 Change in absorption of receptor 2 ($c = 1 \times 10^{-5}$ M) in CH₃CN in presence of urea.

Fig. S4 Change in absorption of receptor 2 ($c = 1 \times 10^{-5}$ M) in CH₃CN in presence of thiourea.

Flourescence study of 1 -2 in CHCl₃

Fig. S5 Change in emission of **1** ($c = 1 \times 10^{-5}$ M) in CHCl₃ in presence of stoichiometric amounts of thiourea and the dilution spectra of the 1:1 complex ($\lambda_{ex} = 368$ nm). (inset) plot of fluorescence intensity *vs*. concentration of the 1:1 complex of thiourea with **1**

Fig. S6 Change in emission of **2** ($c = 1 \times 10^{-5}$ M) in CHCl₃ in presence of stoichiometric amounts of thiourea and the dilution spectra of the 1:1 complex ($\lambda_{ex} = 368$ nm). (inset) plot of fluorescence intensity *vs*. concentration of the 1:1 complex of thiourea with **2**

Fig. S7 Change in emission of receptor **2** ($c = 1 \ge 10^{-5}$ M) and its 1:1 complexes with urea and thiourea in CHCl₃.

UV Job's Plot¹

The stoichiometry was determined by the continuous variation method (Job Plot). In this method, solutions of host and guests of equal concentrations were prepared in dry CH₃CN. Then host and guest solutions were mixed in different proportions maintaining a total volume of 3 mL of the mixture. The related compositions for host:guest (ν/ν) were 3:0, 2.5:0.5, 2.2:0.8, 2:1, 1.8:1.2, 1.5:1.5, 1:2, 0.8:2.2, 0.5:2.5, 0.2:2.8. All the prepared solutions were kept for 1 h with occasional stirring at room temperature. Then absorption of the solutions of different compositions was recorded. The concentration of the complex i.e., [HG] was calculated by the equation [HG] = $\Delta A/A_0 \times$ [H] where $\Delta A/A_0$ indicates the relative absorbance and [H] corresponds the concentration of pure host. Mole fraction of the guest (X_G) was plotted against concentration of the host-guest complex concentration [HG] is maximum, gives the stoichiometry of the complex.

Determination of binding constants

Calculation for approximate binding constant (K_a) determination from dilution method for the urea complex of 1 in CHCl₃ by fluorescence method²

Working formula³: $d/A_c = (1/K_c \epsilon_c l)^{1/2} \cdot 1/(A_c)^{1/2} + 1/\epsilon_c l....(1)$

Here K_a calculation is based on the assumptions:

1:1 complex formation between urea and receptor 1.

Complex with other stoichiometries are absent.

Here the concentration term (d) and the absorbance term (A_c) are considered only for the urea-complex (assuming complete complexation with the help of excess urea which does not effect concerned spectra)

But here the absorbance term (A_c) is replaced by using the equation⁴

 $F = 2.3I_0 \Phi \epsilon b c \dots (2)$

Where F = Fluorescence intensity, $I_0 = Intensity$ of the excitation source

 ε = molar absorptivity at the excitation wavelength

b = path length

 Φ = Fluorescence quantum yield

Evidently $\varepsilon bc = A_c$ (absorbance or optical density)

Now from (2), $F = 2.3I_0 \Phi \epsilon bc = 2.3I_0 \Phi A_c$

 $A_c = (F/2.3I_0 \Phi)....(3)$

From (1), $d/(F/2.3I_0 \Phi) = (1/K_a \epsilon_c l)^{1/2} \cdot 1/(F/2.3I_0 \Phi)^{1/2} + 1/\epsilon_c l$ or, $d \ge 2.3I_0/(F/\Phi) = (1/K_a \epsilon_c l)^{1/2} \cdot (2.3I_0)^{1/2}/(F/\Phi)^{1/2} + 1/\epsilon_c l$ $(d/Z) = [(1/K_a \epsilon_c l)^{1/2}] [(2.3I_0)^{1/2}/Z^{1/2}] [1/2.3I_0] + 1/[2.3I_0 \epsilon_c l]$ $= (1/2.3I_0 K_a \epsilon_c l)^{1/2} (1/Z^{1/2}) + 1/(2.3I_0 \epsilon_c l)$ [where, $Z = F/\Phi$]

From a linear plot of (d/Z) vs $1/Z^{1/2}$, we get an equation of the type Y = BX + AWhere, Y = (d/Z), $B = (1/2, 3I_0 K_a \epsilon_c l)^{1/2}$, $X = 1/Z^{1/2}$, $A = 1/2.3I_0 \epsilon_c l$ From this $A/B^2 = (1/2, 3I_0 K_a \epsilon_c l)/[(1/2, 3I_0 K_a \epsilon_c l)^{1/2}]^2 = K_a$ (binding constant)

Here, in the calculation of quantum yield Φ is measured by busing the equation⁵,

$$\Phi_{\rm u} = \Phi_{\rm s} \left(F_{\rm u}/F_{\rm s} \right) \left(A_{\rm s}/A_{\rm u} \right) \left(\lambda_{\rm exc(s)}/\lambda_{\rm exc(u)} \right) \left(\eta_{\rm u}/\eta_{\rm s} \right)$$

Where, u and s indicate the unknown and standard solution, respectively. Φ = quantum yield, F = area under the emission curve, A = absorbance at excitation wavelength, λ = excitation wavelength, η = refractive index of the solvent.

Here Φ measurements were performed using anthracene in ethanol as standard [$\Phi = 0.27$]⁶.

System	Concentration (d) M	Fluorescence Intensity (F)	Ouantum Yield (Φ)	$F/\Phi = Z$	(d/Z) = Y	$1/Z^{1/2} = X$
		At 426 nm				
Urea complex of receptor	1 x 10 ⁻⁵	85.42	0.0551	3365.15	2.97 x 10 ⁻⁹	0.0172
1 (UCR 1) UCR 1 : CHCl ₃ (3.5:0.5) by yol	0.875 x 10 ⁻⁵	58.89	0.0427	1379.15	6.34 x 10 ⁻⁹	0.0269
$\begin{array}{c} \text{UCR } 1 \\ \text{CHCl}_3 \\ (3:1) \\ \text{by vol.} \end{array}$	0.75 x 10 ⁻⁵	51.41	0.0444	1157.88	6.48 x 10 ⁻⁹	0.0294
UCR 1 : CHCl ₃ (2.5:1.5) by vol.	0.625 x 10 ⁻⁵	34.36	0.0371	926.14	6.75 x 10 ⁻⁹	0.0328
UCR 1 : CHCl ₃ (2:2) by vol.	0.50 x 10 ⁻⁵	13.53	0.0216	626.39	7.98 x 10 ⁻⁹	0.0399
UCR 1 : CHCl ₃ (1.5:2.5) by vol.	0.375 x 10 ⁻⁵	14.08	0.0315	446.98	8.39 x 10 ⁻⁹	0.0473
UCR 1 : CHCl ₃ (1:3) by vol.	0.25 x 10 ⁻⁵	6.10	0.0271	225.09	11.107 x 10 ⁻⁹	0.0666
UCR 1 : CHCl ₃ (0.5:3.5) by vol.	0.125 x 10 ⁻⁵	3.60	0.0559	64.4	19.41 x 10 ⁻⁹	0.1246

 $\mathbf{Y} = \mathbf{A} + \mathbf{B} * \mathbf{X}$

Parameter	Value	Error		
A B	1.86817E-9 1.41621E-7	4.32334E-10 7.47662E-9		-
R	SD	N	Р	
0.99174	6.79115E-10	8	< 0.0001	_

From the equation, $K_a = A/B^2$ i.e. $K_a = (intercept)/(slope)^2 = 1.14 \times 10^5 M^{-1}$

Quantum yield (Φ) of receptor **1** = 0.0058

Calculation for approximate binding constant (K_a) determination from dilution method for the thiourea complex of 1 in CHCl₃ by fluorescence method

In a similar way as described above, $K_{\rm a}$ for 1-thiourea complex can be determined by following way,

System	Concentration	Fluorescence	Ouantum	F/Φ	(d/Z) = Y	$1/Z^{1/2}$
	(d) M	Intensity (F)	Yield (Φ)	$=\Sigma$		= X
		At 426 nm				
Thiourea	1 x 10 ⁻⁵	65.45	0.0444	1474.1	6.78 x 10 ⁻⁹	0.026
complex						
of receptor						
1 (TUCR						
1)	0.077.105		0.0440	107617	6.0.7 10.9	0.000
TUCR I :	0.875×10^{-5}	57.30	0.0449	1276.17	6.85 x 10 ⁻⁵	0.028
$CHCl_3$						
(3.5:0.5)						
by Vol.	0.75 10-5	5(24	0.054	1041 40	7.2 10-9	0.021
TUCK I :	0.75×10^{-5}	56.24	0.054	1041.48	7.2 X 10	0.031
$(2\cdot1)$						
(3.1)						
	0.625×10^{-5}	34 36	0.0444	773.87	8.07×10^{-9}	0.036
CHCl	0.023 X 10	54.50	0.0444	//3.8/	0.07 X 10	0.030
(25.15)						
(2.5.1.5)						
TUCR 1 ·	0.50×10^{-5}	21.78	0.0356	611 79	8 17 x 10 ⁻⁹	0.0404
CHCl ₃	0.001110		0.0220	011.75	0117 11 10	0.0.0
(2:2)						
by vol.						
TUCR 1 :	0.375 x 10 ⁻⁵	14.08	0.0338	416.57	9 x 10 ⁻⁹	0.049
CHCl ₃						
(1.5:2.5)						
by vol.						
TUCR 1 :	0.25 x 10 ⁻⁵	8.20	0.042	195.24	12.8 x 10 ⁻⁹	0.0715
CHCl ₃						
(1:3)						
by vol.						
TUCR 1 :	0.125 x 10 ⁻⁵	2.44	0.0614	39.74	31.45 x	0.1586
CHCl ₃					10 ⁻⁹	
(0.5:3.5)					10	
by vol.						

 $\mathbf{Y} = \mathbf{A} + \mathbf{B} * \mathbf{X}$

Parameter	Value	Error		
A B	9.5561E-10 1.87685E-7	5.91719E-10 8.58371E-9		
R	SD	N	Р	
0.99378	1.00694E-9	8	<0.0001	

 K_a for 1-thiourea complex = 2.71 x 10⁴ M⁻¹

Calculation for approximate binding constant (K_a) determination from dilution method for the urea complex of 2 in CHCl₃ by fluorescence method

System	Concentration	Fluorescence	Ouantum	F/ Φ	(d/Z) = Y	$1/Z^{1/2}$
	(d) M	Intensity (F)	Yield (Φ)	= Z		= X
		At 425 nm				
Urea	1 x 10 ⁻⁵	128.85	0.0632	2038.76	4.90 x 10 ⁻⁹	0.0221
complex						
of receptor						
2 (UCR 2)						
UCR 2 :	0.875 x 10 ⁻⁵	91.51	0.0511	1790.80	4.88 x 10 ⁻⁹	0.0236
CHCl ₃						
(3.5:0.5)						
by vol.						
UCR 2 :	0.75 x 10 ⁻⁵	65.06	0.0452	1439.38	5.21 x 10 ⁻⁹	0.0263
CHCl ₃						
(3:1)						
by vol.						
UCR 2 :	0.625 x 10 ⁻⁵	54.24	0.0463	1171.49	5.33 x 10 ⁻⁹	0.0292
CHCl ₃						
(2.5:1.5)						
by vol.	£				0	
UCR 2 :	0.50 x 10 ⁻⁵	48.07	0.0511	940.70	5.31 x 10 ⁻⁹	0.0326
CHCl ₃						
(2:2)						
by vol.	0.0.0.0.5		0.00(1	<u> </u>	5 0 5 1 0 - 9	0.0004
UCR 2 :	0.375×10^{-5}	23.47	0.0364	644.78	5.82×10^{-5}	0.0394
$CHCl_3$						
(1.5:2.5)						
by vol.	0.05 10-5	15.21	0.0272	410.45	(00 10-9	0.0402
UCK Z:	0.25 X 10	15.31	0.03/3	410.45	6.09 X 10	0.0493
$CHCl_3$						
(1.3)						
$\frac{1}{100} \frac{1}{100} \frac{1}$	0.125×10^{-5}	8 86	0.0522	160 73	7.36×10^{-9}	0.0767
CHCL	0.123 X 10	0.00	0.0322	109.75	7.30 X 10	0.0707
(0.5:3.5)						
by yol						
(2:2) by vol. UCR 2 : CHCl ₃ (1.5:2.5) by vol. UCR 2 : CHCl ₃ (1:3) by vol. UCR 2 : CHCl ₃ (0.5:3.5) by vol.	0.375 x 10 ⁻⁵ 0.25 x 10 ⁻⁵ 0.125 x 10 ⁻⁵	23.47 15.31 8.86	0.0364 0.0373 0.0522	644.78 410.45 169.73	5.82 x 10 ⁻⁹ 6.09 x 10 ⁻⁹ 7.36 x 10 ⁻⁹	0.0394 0.0493 0.0767

Y = A + B * X

Parameter	Value		Error
A B	3.94147E-9 4.46798E-8		8.13852E-11 1.97984E-9
R	SD	N	Р
0.99416	9.55287E-11	8	<0.0001

 K_a for **2**-urea complex = 1.97 x 10⁶ M⁻¹

Quantum yield (Φ) of receptor **2** = 0.0147

Calculation for approximate binding constant (K_a) determination from dilution method for the thiourea complex of 2 in CHCl₃ by fluorescence method

System	Concentration (d) M	Fluorescence Intensity (F) At 425 nm	Ouantum Yield (Φ)	$F/\Phi = Z$	(d/Z) = Y	$1/Z^{1/2} = X$
Thiourea complex of receptor 2 (TUCR 2	1 x 10 ⁻⁵	74.94	0.0364	2058.79	4.86 x 10 ⁻⁹	0.022
TUCR 2: CHCl ₃ (3.5:0.5) by vol.	0.875 x 10 ⁻⁵	49.02	0.0271	1808.85	4.84 x 10 ⁻⁹	0.0235
TUCR 2: CHCl ₃ (3:1) by vol.	0.75 x 10 ⁻⁵	40.16	0.0261	1538.7	4.87 x 10 ⁻⁹	0.0255
TUCR 2: CHCl ₃ (2.5:1.5) by vol.	0.625 x 10 ⁻⁵	41.94	0.0331	1267.07	4.93 x 10 ⁻⁹	0.0281
TUCR 2: $CHCl_3$ (2:2) by vol.	0.50 x 10 ⁻⁵	21.22	0.0232	914.65	5.47 x 10 ⁻⁹	0.0331
TUCR 2: CHCl ₃ (1.5:2.5) by vol.	0.375 x 10 ⁻⁵	14.42	0.0224	643.75	5.83 x 10 ⁻⁹	0.0394
TUCR 2: CHCl ₃ (1:3) by vol.	0.25 x 10 ⁻⁵	7.70	0.0184	418.78	5.97 x 10 ⁻⁹	0.0489
TUCR 2: CHCl ₃ (0.5:3.5) by yol	0.125 x 10 ⁻⁵	4.48	0.0278	161.51	7.74 x 10 ⁻⁹	0.0787

 K_a for 2-thiourea complex = 1.35 x 10⁶ M⁻¹

Calculation for binding constant (K_a) determination from direct titration method in CH₃CN by fluorescence method

Working formula⁷: $F_0/(F-F_0) = [\Phi_M \mathcal{E}_M / (\Phi_p \mathcal{E}_p - \Phi_M \mathcal{E}_M)][(1/K_a \mathcal{E}_g) + 1]$

Where F_0 and F denote the measured fluorescence intensity prior and after adding guest. Here, Φ_M and Φ_p are fluorescence quantum yields of the monomer and complex, respectively. The measured relative fluorescence intensities $[F_0 / (F-F_0)]$ as a function of the inverse of guest concentrations (C_g) were plotted to ascertain the binding constant values. The ratio of the intercept to the slope gave the binding constant (K_a).

Receptor 1 with urea:

Receptor 2 with urea:

Calculation for binding constant (K_a) determination from direct titration method in CH₃CN by UV-vis method

Working formula⁷: $A_0/(A-A_0) = [C_M/(C_C - C_M)][(1/K_aC_g) + 1]$

Where A_0 and A denote the measured absorbance prior and after adding guest. Here, C_M and are molar extinction coefficients of monomer and hydrogen-bonded complex. The measured relative absorbance $[A_0 / (A-A_0)]$ as a function of the inverse of guest concentrations (C_g) were plotted to ascertain the binding constant values. The ratio of the intercept to the slope gave the binding constant (K_a).

Receptor 1 with urea

Receptor 1 with thiourea

Receptor 2 with urea

Receptor 2 with thiourea

References

- 1. P. Job, Ann. Chim., 1928, 9, 113.
- 2. S. Goswami, R. Mukherjee and J. Ray, Org. Lett., 2005, 7, 1283.
- H. M.Colquhoun, E. P. Goodings, J. M. Maud, J. F. Stoddart, J. B. Wolstenholme and D. J. Williams, J. Chem. Soc., Perkin Trans. 2 1985, 607.
- 4. "Binding constants- The Measurement of Molecular Complex Stability"- John Wiley & Sons (1987), by Kenneth A. Connors: page 340.
- 5. R. A. Velapoldi and H. H. Tonnesen, Journal of Fluorescence, 2004, 14, 465.
- 6. (a) W. H. Melhuish, J. Phys. Chem., 1961, 65, 229; (b) W. R. Dawson and M. W. Windsow, J. Phys. Chem., 1970, 74, 4480.
- 7. P.T. Chou, G. R. Wu, C. Y. Wei, C. C. Cheng, C. P. Chang and F. T. Hung, *J. Phys. Chem. B.*, 2000, **104**, 7818.