Supporting Information

Figure 1s Changes in the UV–Vis absorption spectra by titration of $[Zn(L^1)(Py)]$ with Nd(NO₃)₃•6(H₂O) in MeCN solutions (4×10⁻⁵ M)

Figure 2s Titration of $[\mathbf{Zn}(\mathbf{L}^1)(\mathbf{Py})]$ with Nd(NO₃)₃•6(H₂O) in MeCN solution (4×10⁻⁵ M), showing the quenching of $[\mathbf{Zn}(\mathbf{L}^1)(\mathbf{Py})]$ chromophore-based visible emission upon gradual addition of Nd(NO₃)₃•6(H₂O)

Figure 3s Titration of $[Zn(L^1)(Py)]$ with Nd(NO₃)₃•6(H₂O) in MeCN solution (4×10⁻⁵ M), showing a gradual increase of Nd-centered NIR emission upon gradual addition of Nd(NO₃)₃•6(H₂O)

Figure 4s Changes in the UV–Vis absorption spectra by titration of $[Zn(L^2)(Py)]$ with $Nd(NO_3)_3 \cdot 6(H_2O)$ in MeCN solutions $(4 \times 10^{-5} \text{ M})$

Figure 5s Titration of $[\mathbf{Zn}(\mathbf{L}^2)(\mathbf{Py})]$ with Nd(NO₃)₃•6(H₂O) in MeCN solutions (4×10⁻⁵ M), showing the gradual quenching of $[\mathbf{Zn}(\mathbf{L}^2)(\mathbf{Py})]$ chromophore-based visible emission upon gradual addition of Nd(NO₃)₃•6(H₂O)

Figure 6s Titration of $[Zn(L^2)(Py)]$ with Nd(NO₃)₃•6(H₂O) in MeCN solutions (4×10⁻⁵ M), showing a gradual increase of Nd-centered NIR emission upon gradual addition of

 $Nd(NO_3)_3 \bullet 6(H_2O)$

Figure 1s

Figure 2s

Figure 3s

Figure 4s

Figure 5s

Figure 6s

