In compound 4a a H -bond between $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{n})$ and the oxygen atom $\mathrm{O}(2)$ of a symmetry related molecule (see Table S1) gives rise to a chain extending along the x axis. In the crystal lattice of compound $\mathbf{8} \mathbf{b}$ a sort of trimer is formed due to the hydrogen-bond interactions (weaker ${ }^{1}$ than in $\mathbf{4 a}$) between the H -bond donors $\mathrm{N}(1)$ and $\mathrm{N}(2)$ and the oxygen atoms of two symmetry related molecules (see Table S1). In addition the hydrogen atom bonded to $\mathrm{N}(2)$ further interacts with a symmetry related oxygen atom $\mathrm{O}(1)(\mathrm{x}-1,+\mathrm{y},+\mathrm{z})$ so that a chain is formed by the repetition of the trimer unit along the x axis (Scheme S1). Finally in compounds 13a and 14a, in addition to an intermolecular hydrogen bond interaction involving the hydrogen atom bonded to $\mathrm{N}(1)$ and a symmetry related oxygen atom $(\mathrm{O}(1)$ and $\mathrm{O}(3)$ for 13a and 14a, respectively) (see Table S1) a $\pi-\pi$ interaction between an aromatic ring $[C(7)-C(12)$ and $C(1)-C(6)$ in compounds 13a and 14a, respectively] and its symmetry related image (see Table S2) there exists (Scheme S1).

Finally, in the crystal lattices of compounds $\mathbf{5 b} \cdot\left(\mathbf{M e}_{2} \mathbf{S O}\right)$ and $\mathbf{1 5 a} \cdot\left(\mathbf{M e}_{2} \mathbf{S O}\right)$ the oxygen atom $\mathrm{O}(1 \mathrm{~s})$ of the crystallization $\mathrm{Me}_{2} \mathrm{SO}$ (DMSO) molecule acts as a bidentate acceptor of H -bonds with respect to the hydrogen atoms bound to $\mathrm{N}(1 \mathrm{a})$ and $\mathrm{N}(1 \mathrm{~b})$ (see Table S 1). No additional intermolecular interactions are present in the 3D-arrangement of $\mathbf{5 b} \cdot\left(\mathbf{M e}_{2} \mathbf{S O}\right)$; while in compound $\mathbf{1 5 a} \cdot\left(\mathbf{M e}_{2} \mathbf{S O}\right)$ a dimer is formed due to a $\pi-\pi$ interaction between the symmetry related aromatic rings A and A " (" $=-x+1,-y+1,-z+1$) (Scheme S1 and Table S2).

[^0]Table S1 Intermolecular hydrogen bonds in compounds $\mathbf{4 a}, \mathbf{8 b}, \mathbf{1 3 a}, \mathbf{1 4 a}, \mathbf{5 b} \cdot\left(\mathbf{M e}_{2} \mathbf{S O}\right)$ and 15a($\mathrm{Me}_{2} \mathrm{SO}$)

	X-H ${ }^{\text {* }} \mathrm{Y}$	$\mathrm{X}^{\cdots} \mathrm{Y}(\AA)$	$\mathrm{H}^{*} \mathrm{Y}(\AA)$	X-H"Y ${ }^{(}{ }^{\circ}$)
4a	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{n}) \cdots \mathrm{O}(2){ }^{\prime}$	2.904(3)	1.99(4)	166(3)
8b	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{n}) \cdots \mathrm{O}(2){ }^{\prime}$	3.090(4)	2.36(4)	150(4)
	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{n}) \cdots \mathrm{O}(1){ }^{\prime \prime}$	3.001(5)	2.37(4)	158(4)
	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{n}) \cdots \mathrm{O}(1)^{, \mathrm{v}}$	3.137(4)	2.64(4)	121(3)
13a	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{n}) \cdots \mathrm{O}(1)^{\mathrm{V}}$	2.920(3)	2.22(3)	173(3)
14a	$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{n}) \cdots{ }^{\cdots}(3)^{\mathrm{v}}$	3.056(7)	2.27(6)	156(6)
$5 \mathrm{~b} \cdot\left(\mathrm{Me}_{2} \mathrm{SO}\right)$	$\mathrm{N}(1 \mathrm{a})$ - H (1na) $\cdots \mathrm{O}(1 \mathrm{~s})$	2.808(5)	1.97(5)	163(5)
	$\mathrm{N}(1 \mathrm{~b})-\mathrm{H}(1 \mathrm{nb}) \cdots \mathrm{O}(1 \mathrm{~s})$	2.815(6)	2.03(6)	165(5)
15a'(Me2SO)	$\mathrm{N}(1 \mathrm{a}) \cdots \mathrm{O}(1 \mathrm{~s})^{*}$	2.98(1)		
	$\mathrm{N}(1 \mathrm{~b}) \cdots \mathrm{O}(1 \mathrm{~s})^{*}$	3.26(1)		

$‘=x-1 / 2,-y+3 / 2,+z ;{ }^{\prime \prime}=-x+1,-y+1,-z+2 ;{ }^{\prime \prime \prime}=-x+2,-y+2,-z+2 ;{ }^{\prime v}=x-1,+y,+z ;{ }^{v}=x-1 / 2,-y+1 / 2,+z$
${ }^{\mathrm{v}},=-\mathrm{x}+2,-\mathrm{y}+2,-\mathrm{z}+2$; * $=$ in compound $\mathbf{1 5 a}\left(\mathbf{M e}_{2} \mathbf{S O}\right)$ the hydrogen atoms bonded to $\mathrm{N}(1 \mathrm{a})$ and (N1b) were not experimentally found.

Table S2 $\pi-\pi$ Interactions in the crystal packing of compounds 13a, 14a and 15a($\mathbf{M e}_{2} \mathbf{S O}$)

		Distance between the centroids of the aromatic rings (\AA)
$\mathbf{1 3 a}$	C(7)-C(12)/C(7)-C(12)’	$4.052(3)$
$\mathbf{1 4 a}$	C(1)-C(6)/C(1)-C(6)"	$3.785(6)$
$\mathbf{1 5 a}\left(\mathbf{M e}_{2} \mathbf{S O}\right)$	C1b-C6b/C1b-C6b""	$3.66(1)$

[^1]Table S3 Most relevant geometrical parameters (distances (A ${ }^{\circ}$), angles $\left({ }^{\circ}\right)$) as derived from ab-initio geometry optimizations (HF/6-311+G(d,p) level of theory) of the 4a-I, 4a-II, 4a-III modelled species. ${ }^{\text {a }}$ Those derived from X-ray diffraction data of 4a have been also reported for comparative purposes.

	4-I	4-II	4-III	4
$\mathrm{r}_{\mathrm{N} 1-\mathrm{S} 1} / \AA$	1.635	1.635	1.633	1.616(3)
$\mathrm{r}_{\text {S1-01 }}{ }^{\text {b }}$ /	1.423	1.423	1.422	1.426(2)
$\mathrm{r}_{\mathrm{S} 1-\mathrm{O} 2} / \AA$	1.415	1.415	1.419	1.434(2)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{H}} / \AA$	0.997	0.997	1.000	0.94(4)
$\mathrm{r}_{\text {S1-Cl }} / \AA$	1.766	1.776	1.783	1.754(3)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{C} 7} / \AA$	1.417	1.417	1.425	1.420(4)
$\Sigma(<\mathrm{N} 1)^{\mathrm{c}}{ }^{\circ}$	354.4	354.4	345.7	359(2)
$\tau_{1}{ }^{\text {d }}$ / ${ }^{\text {d }}$	-58.9	-59.0	-55.8	-62.1(3)
$\tau_{2}{ }^{\text {e }} /{ }^{\circ}$	-121.5	-121.5	-178.8	-122.1(3)
$\tau_{3}{ }^{\mathrm{f} / \mathrm{o}}$	12.5/59.9	12.6/59.9	55.7/2.3	16.3(1)/ 58.1(1)
Σ (internal<) ${ }^{\text {g } / 0}$	839.4	839.4	832.8	839.4(2)
<(A/B) ${ }^{\text {h/ }}{ }^{\circ}$	48.9	48.9	54.5	45.5(1)
$\Delta \mathrm{C}_{\mathrm{s}}{ }^{\text {/ }}$ /	42.0	42.0	46.3	50.0
Bow ${ }^{1 / 0}$	54.5	54.5	55.2	50.6(3)
Stern ${ }^{\text {i }}{ }^{\circ}$	30.7	30.7	25.1	40.4(1)

${ }^{\text {a }}$ Refer to Figure 3 in the manuscript for molecular models and atom labelling; ${ }^{\text {b }}$ O1 Is the sulfone oxygen atom closest to the N-bound hydrogen; ${ }^{\text {c }}$ Summation of the bond angles about the sulfonamide nitrogen atom N1; ${ }^{\mathrm{d}}$ [C7-N1-S1-C1 Dihedral angle; ${ }^{\mathrm{e}}$ C6-C1-S1-N1 Dihedral angle; ${ }^{\mathrm{f}}$ Angles between the plane through $\mathrm{N} 1, \mathrm{~S} 1, \mathrm{Y}$ and the least-squares planes through rings A and B , respectively; ${ }^{\text {g }}$ Sum of the internal bond angles in the seven-membered ring, which should be about 808° on the basis of the VSEPR rule. ${ }^{\text {h }}$ Interplanar angle between the aromatic rings. ${ }^{\text {i }}$ See refs. 23 and 24 in the manuscript for the parameter definitions.

Table S4 Most relevant geometrical parameters (distances (A°), angles $\left(^{\circ}\right)$) as derived from ab-initio geometry optimizations (HF/6-311+G(d,p) level of theory) of the 8a-I, 8a-II, 8a-III modelled species. ${ }^{\text {a }}$ Those derived from X-ray diffraction data of $\mathbf{8 b}$ have been also reported for comparative purposes.

	8a-I	8a-II	8a-III	8b
$\mathrm{r}_{\mathrm{N} 1-\mathrm{S} 1} / \AA$	1.630	1.643	1.630	1.596(4)
$\mathrm{r}_{\text {S1-01 }}{ }^{\text {b }}$ / \AA	1.423	1.424	1.423	1.435(3)
$\mathrm{r}_{\mathrm{s} 1-\mathrm{O} 2} / \AA$	1.420	1.423	1.420	1.426(3)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{H} / \AA} / \mathrm{A}$	1.000	0.998	1.000	0.67(4)
$\mathrm{r}_{\mathrm{s} 1-\mathrm{C} 1 / \AA}$	1.779	1.761	1.779	1.750(4)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{C} 7} / \AA$	1.426	1.461	1.426	1.412(5)
$\Sigma(<\mathrm{N} 1)^{\mathrm{c}} /{ }^{\circ}$	347.0	347.0	346.6	359(3)
$\tau_{1}{ }^{\text {d }}$ / ${ }^{\text {d }}$	-65.0	-84.0	-64.8	-81.3(3)
$\tau_{2}{ }^{\text {e }}{ }^{\circ}$	-168.1	-145.5	-168.3	-132.0(3)
$\tau_{3}{ }^{\mathrm{f} / \mathrm{o}}$	55.3/13.8	54.3/38.6	55.3/13.6	39.0(1) / 49.1(2)
Σ (internal<) ${ }^{\text {g }}{ }^{\circ}$	841.7	847.7	842.6	857.6(3)
<(A/B) ${ }^{\mathrm{h} /{ }^{\circ}}$	44.1	28.6	44.3	21.5(1)
$\Delta \mathrm{C}_{\text {s }}{ }^{\text {/ }}$ / ${ }^{\text {d }}$	53.6	68.0	53.4	65.7
Bow ${ }^{1 / 0}$	45.9	23.5	46.1	9.7(4)
Stern ${ }^{\text {i }}$ \%	19.6	9.1	19.8	28.7(2)

${ }^{\text {a }}$ Refer to Figure 3 in the manuscript for molecular models and atom labelling; ${ }^{\text {b }}$ O1 Is the sulfone oxygen atom closest to the N-bound hydrogen; ${ }^{\text {c }}$ Summation of the bond angles about the sulfonamide nitrogen atom N1; ${ }^{\mathrm{d}}$ [C7-N1-S1-C1 Dihedral angle; ${ }^{\mathrm{e}}$ C6-C1-S1-N1 Dihedral angle; ${ }^{\mathrm{f}}$ Angles between the plane through $\mathrm{N} 1, \mathrm{~S} 1, \mathrm{Y}$ and the least-squares planes through rings A and B , respectively; ${ }^{8}$ Sum of the internal bond angles in the seven-membered ring, which should be about 808° on the basis of the VSEPR rule. ${ }^{\text {h }}$ Interplanar angle between the aromatic rings. ${ }^{\text {i }}$ See refs. 23 and 24 in the manuscript for the parameter definitions.

Table S5 Most relevant geometrical parameters (distances (A°), angles $\left(^{\circ}\right)$) as derived from ab-initio geometry optimizations (HF/6-311+G(d,p) level of theory) of the 13a-I, 13a-II, 13a-III modelled species. ${ }^{\text {a }}$ Those derived from X-ray diffraction data of 13a have been also reported for comparative purposes.

	13a-I	13a-II	13a-III	13a
$\mathrm{r}_{\mathrm{N} 1-\mathrm{S} 1} / \AA$	1.634	1.634	1.632	1.610(3)
$\mathrm{r}_{\text {S1-O1 }}{ }^{\text {b }}$ /	1.424	1.424	1.422	1.432(2)
$\mathrm{r}_{\mathrm{Sl} 1-\mathrm{O} 2} / \AA$	1.415	1.415	1.420	1.428(2)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{H}} / \AA$	0.995	0.995	1.000	0.70(3)
$\mathrm{r}_{\text {S1-C1 }} / \AA$	1.773	1.773	1.792	1.769(2)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{C} 7 /} \AA$	1.408	1.408	1.425	1.434(4)
$\Sigma(<\mathrm{N} 1)^{\mathrm{c} /{ }^{\circ}}$	359.3	359.4	346.0	346(2)
$\tau_{1}{ }^{\text {d }}$ / ${ }^{\text {d }}$	-74.6	-74.1	-53.6	-69.4(2)
$\tau_{2}{ }^{\text {e }}$ / ${ }^{\text {d }}$	-117.0	-116.9	167.7	-173.0(2)
$\tau_{3}{ }^{\text {f }}$ / ${ }^{\text {d }}$	18.4/65.0	17.9/65.0	56.9/11.7	58.7(1)/ 7.4(1)
Σ (internal<) ${ }^{\text {g }} /{ }^{\circ}$	837.5	837.5	822.8	832.1(2)
< $\mathrm{A} / \mathrm{B})^{\text {h/ }} /{ }^{\circ}$	47.9	48.3	68.2	51.6(1)
$\Delta \mathrm{C}_{\mathrm{s}}{ }^{\text {/ }}$ /	59.3	59.0	43.7	50.6
Bow ${ }^{1 / 0}$	42.5	42.7	49.2	43.2(1)
Stern ${ }^{1}{ }^{\circ}$	31.9	32.1	33.5	12.1(1)

${ }^{\text {a }}$ Refer to Figure 3 in the manuscript for molecular models and atom labelling; ${ }^{\text {b }}$ O1 Is the sulfone oxygen atom closest to the N-bound hydrogen; ${ }^{\text {c }}$ Summation of the bond angles about the sulfonamide nitrogen atom N1; ${ }^{\mathrm{d}}$ [C7-N1-S1-C1 Dihedral angle; ${ }^{\mathrm{e}}$ C6-C1-S1-N1 Dihedral angle; ${ }^{\mathrm{f}}$ Angles between the plane through $\mathrm{N} 1, \mathrm{~S} 1, \mathrm{Y}$ and the least-squares planes through rings A and B , respectively; ${ }^{\text {g }}$ Sum of the internal bond angles in the seven-membered ring, which should be about 808° on the basis of the VSEPR rule. ${ }^{\text {h }}$ Interplanar angle between the aromatic rings. ${ }^{\text {i }}$ See refs. 23 and 24 in the manuscript for the parameter definitions.

Table S6 Most relevant geometrical parameters (distances (A°), angles $\left(^{\circ}\right)$) as derived from ab-initio geometry optimizations (HF/6-311+G(d,p) level of theory) of the 14a-I, 14a-II, 14a-III modelled species. ${ }^{\text {a }}$ Those derived from X-ray diffraction data of $\mathbf{1 4 a}$ have been also reported for comparative purposes.

	14a-I	14a-II	14a-III	14a
$\mathrm{r}_{\mathrm{N} 1 \text {-S } 1} / \AA$	1.638	1.638	1.627	1.594(7)
$\mathrm{r}_{\text {S1-O1 }}{ }^{\text {b }}$ /	1.421	1.420	1.417	1.424(4)
$\mathrm{r}_{\mathrm{Sl} 1-\mathrm{O} 2} / \AA$	1.412	1.412	1.419	1.446(6)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{H}} / \AA$	0.996	0.996	1.001	0.84(7)
$\mathrm{r}_{\text {S1-C1 }} / \AA$	1.774	1.774	1.798	1.773(8)
$\mathrm{r}_{\mathrm{N} 1-\mathrm{C} 7 /} \AA$	1.406	1.406	1.426	1.463(9)
$\Sigma(<\mathrm{N} 1)^{\mathrm{c} /{ }^{\circ}}$	355.2	355.2	347.5	348(2)
$\tau_{1}{ }^{\text {d }}$ / ${ }^{\text {d }}$	-86.6	-86.7	-60.7	-62.9(6)
$\tau_{2}{ }^{\text {e }}$ / ${ }^{\text {d }}$	-120.4	-120.5	174.8	178.0(5)
$\tau_{3}{ }^{\text {f }}$ / ${ }^{\text {d }}$	31.5/65.5	31.6/65.5	25.8/38.4	59.1(3)/ 2.9(2)
Σ (internal<) ${ }^{\text {g }} /{ }^{\circ}$	840.1	840.0	825.8	827.7(3)
< $\mathrm{A} / \mathrm{B})^{\text {h/ }} /{ }^{\circ}$	39.9	39.8	64.1	60.5(2)
$\Delta \mathrm{C}_{\mathrm{s}}{ }^{\text {/ }}$ /	45.6	45.6	50.3	53.4
Bow ${ }^{1 / 0}$	32.3	32.2	48.8	45.8(3)
Stern ${ }^{1}{ }^{\circ}$	27.4	27.4	28.4	20.4(4)

${ }^{a}$ Refer to Figure 3 in the manuscript for molecular models and atom labelling; ${ }^{b}$ O1 Is the sulfone oxygen atom closest to the N-bound hydrogen; ${ }^{\text {c }}$ Summation of the bond angles about the sulfonamide nitrogen atom N1; ${ }^{\mathrm{d}}$ [C7-N1-S1-C1 Dihedral angle; ${ }^{\mathrm{e}}$ C6-C1-S1-N1 Dihedral angle; ${ }^{\mathrm{f}}$ Angles between the plane through $\mathrm{N} 1, \mathrm{~S} 1, \mathrm{Y}$ and the least-squares planes through rings A and B , respectively; ${ }^{\text {g }}$ Sum of the internal bond angles in the seven-membered ring, which should be about 808° on the basis of the VSEPR rule. ${ }^{\text {h }}$ Interplanar angle between the aromatic rings. ${ }^{\text {i }}$ See refs. 23 and 24 in the manuscript for the parameter definitions.

4a

14a

13a

15a

Scheme S1 Schematic representation of the intermolecular interactions in 4a, 8b, 13a, 14a and 15a($\mathrm{Me}_{2} \mathrm{SO}$)

[^0]: G. R. Desiraju, T. Steiner, The weak hydrogen bond, IUCr Monographs on Crystallography, Oxford Science Publications, 1999.

[^1]: ' $=-x,-y,-z+1$; " $=-x+1,-y+1,-z+1$.

