Novel synthesis of magnetic poly (cyclotriphosphazene-co-4, 4['] -sulfonyldiphenol) nanotubes with magnetic phase embedded in walls

Xiaoyan Zhang¹, Xiaobin Huang¹, Xiaozhen Tang^{1,2}

¹School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, 800 Dongchuan

Road, Shanghai, 200240, China

²National Key Laboratory of Metallic Matrix Composite Material, Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai, 200240, China

m _{Fe3O4}	m _{HCCP}	m _{BPS}	V _{TEA}	V_{THF}	C Fe3O4	C _{HCCP}	Ratio	Morphology
/g	/g	/g	/mL	/mL	$/mg \cdot mL^{-1}$	$/mg \cdot mL^{-1}$	Fe ₃ O ₄ /HCCP	
0.025	0.125	0.27	1.25	100	0.25	1.25	0.2	Fig.S1
								(a) and (b)
0.025	0.25	0.54	2.5	100	0.25	2.5	0.1	Fig.S1
								(c) and (d)
0.025	0.5	1.08	5	100	0.25	5	0.05	Fig.S1
								(e) and (f)
0.05	0.5	1.08	5	100	0.5	5	0.1	Fig.S1
								(g) and (h)
0.1	0.5	1.08	5	100	1	5	0.2	Fig.S1
								(i) and (j)
0.2	0.5	1.08	5	100	2	5	0.4	Fig.S1
								(k) and (l)

Table S1. The details of the products with different reaction ratios

Figure S1 SEM of the products with different reaction ratios

The morphology of the magnetic PZS nanotubes is highly influenced by the content of Fe_3O_4 nanoparticles. Table S1 shows the details of the products with different reaction ratios. Figure S1 shows the SEM images of the products with different reaction ratios corresponding to Table S1.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Accordingly, within appropriate concentration limits, when the concentration of Fe_3O_4 is fixed, the more HCCP is used, the more successful the synthesis of magnetic PZS nanotubes is; while when the concentration of HCCP is fixed, the less Fe_3O_4 is used, the more successful the synthesis is. It is well known that the growth of crystal is affected by the presence of impurities. When there is no Fe₃O₄ and HCCP is within appropriate concentration limits, TEACI nanocrystal can grow along their axes to form nanometer-sized rodlike structure. When a small quantity of Fe₃O₄ is added, the growth of TEACl nanocrystal is slightly influenced. When HCCP is at a relatively low concentration, few primary template nanocrystals (TEACl) are produced by the reaction and no enough templates are provided in short time. At this time, some primary polymer particles adhered onto the surface of the magnetite nanoparticles can not adhere onto the templates, but grow themselves to form magnetic microspheres; as reaction proceeds, more templates being produced, some primary polymer particles adhered onto the surface of the magnetite nanoparticles adhere onto the templates to form magnetic nanotubes (see Fig. S1 (a, b, c, d)). When HCCP is at a relatively high concentration, abundant primary templates are produced and all the primary polymer particles adhered onto the surface of the magnetite nanoparticles tend to adhere onto the templates to form magnetic nanotubes (see Fig. S1 (e, f, g, h)). When large quantity of Fe₃O₄ is added, the growth of TEACl nanocrystal is highly influenced by Fe₃O₄. They tend to grow fast and form irregular morphology, inducing the primary polymer particles adhered onto the surface of the magnetite nanoparticles adhere onto the templates to form irregular structures (see Fig. S1 (i, j, k, l)).