Electronic supplementary information (ESI)

Oxidative transformation of thiol groups to disulfide bonds in mesoporous silicas:

A diagnostic reaction for probing distribution of organic functional groups

Hsien-Ming Kao,^{*} Po-Jui Chiu, Guang-Liang Jheng, Chia-Chun Kao, Chung-Ta Tsai,

Shueh-Lin Yau, Hui-Hsu Gavin Tsai,^{*} and Yi-Kang Chou

Department of Chemistry, National Central University, Chung-Li, Taiwan 32054,

R.*O*.*C*.

Density Functional Calculations.¹ The B3LYP density functional, Becke's three-parameter exchange functional,² and Lee–Yang–Parr gradient-corrected correlation functional³ with moderate-sized 6-31G(d,p) basis set⁴ were utilized to calculate the optimized structure of the $T^{3}-(Q^{4})_{n}-T^{3}$ motifs (n = 0-3) in which each peripheral Si atom was capped and saturated with hydrogen atoms.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. B. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, B. B. Stefanov, G. Liu,; A. Liashenko, P. Piskorz,; I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 03, Revision D.02; Gaussian, Inc. Wallingford CT, 2004.
- (2) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (3) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- (4) G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081.

	Surface area	Pore volume	Pore size
	(cm^2/g)	(cm^3/g)	(nm)
S1-0.06	800	0.44	3.0
S1-0.2	710 ^a	0.32^{a}	2.5
S15-0.14	560	0.66	4.6
M-0.14	240	0.26	3.6

Table S1. Textural properties of the adsorbents studied.

^aThis sample contains a surface area of 350 cm^2/g and a pore volume of 0.19 cm^3/g due to micropores.

Fig. S1. ²⁹Si MAS NMR spectra of (a) S1-0.06, (b) S1-0.2, (c) M-0.14, and (d) S15-0.14. The dashed lines represent the components used for spectral deconvolution and the T/(T + Q) ratios are indicated in the figure.

Fig. S2 Powder XRD patterns of (a) S1-0.06, (b) S1-0.1, (c) S1-0.2, (d) M-0.14, and (e) S15-0.14.

Fig. S3 N_2 adsorption-desorption isotherms of (a) S1-0.2, (b) S1-0.06, (c) S15-0.14, and (d) M-0.14. The black and red parts represent the adsorption and desorption isotherms, respectively.

Fig. S4 N_2 adsorption-desorption isotherms of the SiO₂ samples, prepared with identical experimental conditions of SBA-15 under template-free conditions (i.e., without P123 templating), functionalized with (a) 0, (b) 10, and (c) 20% of thiol groups. The black and red parts represent the adsorption and desorption isotherms, respectively.

Fig. S5 Cyclic voltammograms of the S1-0.2 sample after Cu^{2+} adsorption of solutions containing (a) 140 and (b) 1000 ppm of Cu^{2+} ions.

Fig. S6 The optimized structure of T'-(Q')₃-T'-(Q)₃₅ (n = 3) obtained from the MM+ molecular mechanics force field in the suite of HyperChem program. Si: Cyan; C: Green; S: Yellow; O: Red; H: White. The S--S distance is 4.17 Å in this model.

Fig. S7 The optimized structure of the T^3 - $(Q^4)_3$ - T^3 motif obtained from DFT calculations. Si: Cyan; C: Green; O: Red and S: Yellow. The S--S distance is 2.08 Å. The hydrogen atoms are not shown in the figure for clarity.

Fig. S8 The optimized structure of T'-(Q')₈-T'-(Q)₃₀ (n = 8) obtained from the MM+ molecular mechanics force field in the suite of HyperChem program. Si: Cyan; C: Green; S: Yellow; O: Red; H: White. The S--S distance is 11.20 Å in this model.