Synthesis, crystal structure and luminescence properties of eight new

lanthanide carboxyphosphonates with a 3D framework structure

Na Zhang, Zhengang Sun,* Yanyu Zhu, Jing Zhang, Lei Liu, Cuiying Huang, Xin Lu, Weinan Wang and Fei Tong

Fig. S1 The simulated XRD pattern of compound 1 (up) and experimental powder XRD patterns of compounds

1–8 (down).

Fig. S2 IR spectra of compounds 1–8.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Fig. S3 TGA curves of compounds 1–8.

Fig. S4 The X–ray powder diffraction pattern of the final product in the thermal decomposition for compound **3.** The final product is NdPO₄ (JCPDS 00–025–1065).

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Fig. S5 Experimental and heated (200 °C) X–ray powder diffraction diagram of compound **7** compared to the calculated one.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

	1 (Ce)	2 (Pr)	3 (Nd)	4 (Sm)	5 (Eu)	6 (Gd)	7 (Y)			
Ln(1)–O(1)#1 ^a	2.410(7)	2.378(6)	2.357(4)	2.319(10)	2.301(8)	2.284(8)	2.258(5)			
Ln(1)-O(3)#2	2.406(8)	2.362(6)	2.343(4)	2.304(11)	2.292(8)	2.296(8)	2.264(5)			
Ln(1)-O(7)	2.456(10)	2.457(6)	2.459(5)	2.464(12)	2.419(9)	2.391(8)	2.327(6)			
Ln(1)–O(6)	2.484(9)	2.480(6)	2.476(5)	2.441(11)	2.424(9)	2.423(8)	2.362(5)			
Ln(1)–O(2)	2.507(8)	2.479(6)	2.469(4)	2.453(10)	2.427(8)	2.422(7)	2.375(5)			
Ln(1)-O(4)#3	2.566(8)	2.546(6)	2.545(4)	2.550(11)	2.521(9)	2.506(9)	2.468(6)			
Ln(1)–O(1)	2.656(8)	2.607(6)	2.581(4)	2.520(10)	2.524(8)	2.534(8)	2.529(5)			
Ln(1)-O(5)#3	2.567(8)	2.548(6)	2.531(5)	2.498(11)	2.485(8)	2.481(8)	2.450(6)			
^a Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z+2; #2 -x, -y+2, -z+2; #3										
x+1, -y+3/2, z+1/2.										

Table S1. Selected bond lengths (Å) for compounds 1–7

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

	1 (Ce)	2 (Pr)	3 (Nd)	4 (Sm)	5 (Eu)	6 (Gd)	7 (Y)			
O(1)#1–Ln (1)–O(3)#2 ^a	94.3(3)	92.8(2)	93.05(16)	93.3(4)	93.1(3)	93.1(3)	94.5(2)			
O(1)#1-Ln (1)-O(7)	161.0(3)	160.6(2)	160.43(16)	160.7(4)	159.9(3)	159.8(3)	158.7(2)			
O(3)#2–Ln (1)–O(7)	93.6(3)	92.9(2)	92.55(17)	92.4(4)	92.9(3)	92.7(3)	92.0(2)			
O(1)#1-Ln (1)-O(6)	81.3(3)	84.6(2)	85.22(15)	86.0(4)	86.1(3)	85.6(3)	85.04(19)			
O(3)#2–Ln (1)–O(6)	160.2(3)	161.9(2)	161.79(16)	162.2(4)	161.2(3)	161.2(3)	160.4(2)			
O(7)–Ln (1)–O(6)	96.7(3)	95.5(2)	95.08(17)	94.0(4)	94.2(3)	95.0(3)	95.5(2)			
O(1)#1-Ln (1)-O(2)	122.8(2)	124.19(19)	124.80(14)	125.3(3)	125.3(3)	125.6(3)	126.40(18)			
O(3)#2–Ln (1)–O(2)	85.2(3)	86.7(2)	86.69(15)	87.2(4)	86.3(3)	86.6(3)	84.65(19)			
O(7)–Ln (1)–O(2)	75.1(3)	74.7(2)	74.25(16)	73.4(4)	74.2(3)	74.1(3)	74.4(2)			
O(6)–Ln (1)–O(2)	81.2(3)	80.0(2)	79.54(15)	78.8(4)	78.9(3)	79.0(3)	79.97(19)			
O(1)#1-Ln (1)-O(4)#3	80.4(3)	82.5(2)	82.61(16)	83.1(4)	82.8(3)	82.7(3)	82.3(2)			
O(3)#2–Ln (1)–O(4)#3	124.4(3)	124.4(2)	124.66(15)	125.3(4)	125.9(3)	126.2(3)	126.62(19)			
O(7)–Ln (1)–O(4)#3	80.8(3)	78.9(2)	78.78(17)	78.6(4)	78.1(3)	78.3(3)	77.6(2)			
O(6)–Ln (1)–O(4)#3	74.1(3)	73.2(2)	73.16(15)	72.4(4)	72.7(3)	72.3(3)	72.83(19)			
O(2)–Ln (1)–O(4)#3	143.0(3)	140.1(2)	139.38(15)	137.8(4)	138.4(3)	137.8(3)	138.46(19)			
O(1)#1-Ln (1)-O(1)	66.6(3)	67.3(2)	67.28(15)	67.3(4)	67.1(3)	67.0(3)	67.12(19)			
O(3)#2–Ln (1)–O(1)	84.5(3)	85.3(2)	85.22(15)	84.6(4)	84.7(3)	84.5(3)	84.76(18)			
O(7)–Ln (1)–O(1)	131.5(3)	131.7(2)	131.93(15)	131.7(3)	132.6(3)	132.9(3)	133.80(19)			
O(6)–Ln (1)–O(1)	76.0(3)	77.2(2)	77.38(15)	78.7(4)	77.7(3)	77.6(3)	76.94(18)			
O(2)–Ln (1)–O(1)	56.4(2)	57.02(18)	57.68(13)	58.3(3)	58.4(3)	58.8(3)	59.42(16)			
O(4)#3–Ln (1)–O(1)	138.2(3)	139.3(2)	139.24(15)	139.7(4)	138.8(3)	138.6(3)	138.39(18)			
O(1)#1-Ln (1)-O(5)#3	82.6(3)	82.9(2)	83.45(16)	84.9(4)	84.1(3)	84.1(3)	82.3(2)			
O(3)#2-Ln (1)-O(5)#3	74.3(3)	73.9(2)	73.90(15)	74.0(4)	74.1(3)	74.1(3)	74.16(19)			
O(7)–Ln (1)–O(5)#3	82.9(3)	80.9(2)	80.12(18)	79.0(4)	79.2(3)	78.9(3)	80.0(2)			
O(6)–Ln (1)–O(5)#3	123.7(3)	123.4(2)	123.72(16)	123.6(4)	124.4(3)	124.3(3)	125.01(19)			
O(2)–Ln (1)–O(5)#3	148.9(3)	147.9(2)	147.00(17)	145.8(4)	145.9(3)	145.8(3)	146.0(2)			
O(4)#3-Ln (1)-O(5)#3	50.1(3)	50.5(2)	50.76(15)	51.3(4)	51.8(3)	52.2(3)	52.54(18)			
O(1)–Ln (1)–O(5)#3	141.0(3)	142.7(2)	143.04(15)	143.8(4)	143.1(3)	143.0(3)	141.28(19)			
^a Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z+2; #2 -x, -y+2, -z+2; #3										

Table S2 Selected angles (°) for compounds 1–7

x+1, -y+3/2, z+1/2.