Supporting Information for

DNA Photocleavage in anaerobic conditions by a Ru(II) polypyridyl complex with long wavelength MLCT absorption

Qian-Xiong Zhou,^{a,b} Wan-Hua Lei,^a Chao Li,^a Yuan-Jun Hou,^a Xue-Song Wang,*^a Bao-Wen Zhang*^a

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and

Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^bGraduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

1. The photostability of [Ru(bpy)₂(dpb)]²⁺

Figure S1 and Figure S2 show the UV-vis absorption spectra and ¹H NMR spectra before and after irradiation with the light above 470 nm for 1 hour, a condition similar to the DNA cleavage experiments. No spectrum changes were found after irradiation, suggesting that $[Ru(bpy)_2(dpb)]^{2+}$ is stable enough at least under the employed conditions. Notably, the absorption spectrum of $[Ru(bpy)_2(dpb)]^{2+}$ undergoes remarkable bathochromic shift in PBS buffer (pH = 7.4) than in acetonitrile, which is favorable for PDT application.

Figure S1. UV-vis absorption spectra of $[Ru(bpy)_2(dpb)]^{2+}$ in PBS buffer (pH = 7.4) before and after irradiation (> 470 nm) for an hour.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Figure S2. ¹H NMR spectra of **1** before (top) and after (bottom) irradiation (> 470 nm) for 1 h. All samples are in D_2O/d_6 -DMSO (1/1).

2. Oxidation potential of [Ru(bpy)₂(dpb)]²⁺

The half-wave oxidation potential of $[Ru(bpy)_2(dpb)]^{2+}$ in acetonitrile was measured to be 1.40 V vs SCE (1.64 V vs NHE) using cyclic voltammetry method (Figure S3).

Figure S3. Cyclic voltammogram of $[Ru(bpy)_2(dpb)]^{2+}$ (100 µM) in acetonitrile vs SCE. Scan rate: 150 mV/s.

3. Reduction potential of [Co(NH₃)₅Cl]²⁺

The reduction of $[Co(NH_3)_5Cl]^{2+}$ is a chemically irreversible process due to the lability of Co(II) complex.^[1] Thus the reduction turn-on potential, which was measured to be 0.064 V vs SCE (0.31 V vs NHE), was applied for the calculation of Rehm-Weller equation.

Figure S4. Cyclic voltammogram of $[Co(NH_3)_5Cl]^{2+}$ in PBS buffer (pH = 7.4) vs SCE. Scan rate: 150 mv/s).

4. 0-0 transition energy of the ³MLCT state of [Ru(bpy)₂(dpb)]²⁺

In many cases, the ³MLCT 0-0 transition energy of a Ru complex may be estimated from the ³MLCT emission maximum measured in glass matrix at 77K. Generally, ³MLCT emission of a Ru complex will undergo a remarkable blue shift (about 40 nm)^[2] in glass matrix at 77K than in the same solution but at room temperature. Thus, on the basis of the ³MLCT emission maxima of 926 nm at room temperature, the ³MLCT 0-0 transition energy of $[Ru(bpy)_2(dpb)]^{2+}$ was estimated to be 1.4 eV, equivalent to 886 nm (obtained by subtracting 40 nm from 926 nm).

[1] E. D. A. Stemp, M. R. Arkin, J. K. Barton, J. Am. Chem. Soc. 1997, 119, 2921.

[2] (a) Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2007, 46, 6011. (b) Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2009, 48, 375