Electronic Supporting Information for:

8-Quinoline Based Ligands and Their Metallic Derivatives: A Structural and Statistical Investigation of Quinoline $\pi-\pi$ stacking Interactions \dagger

Radu F. Semeniuc,* Thomas J. Reamer and Mark D. Smith

Correspondance of the Figures with the Schemes within the article:
Scheme $1 \rightarrow$ see Fig. S1
Scheme $2 \rightarrow$ see Fig. S1
Scheme $3 \rightarrow$ see Fig. S1
Scheme $4 \rightarrow$ see Fig. S1
Scheme $5 \rightarrow$ see Fig. S1
Scheme $6 \rightarrow$ see Fig. S1
Scheme $7 \rightarrow$ see Fig. S1

Fig. S1. ADEHOH: $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA, \perp=3.5 \AA, \beta=18^{\circ}, \mathrm{H}-\mathrm{Ct}=2.74 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=153^{\circ}, \mathrm{H}-\mathrm{O}=2.71 \AA$, C-$\mathrm{H}-\mathrm{O}=162^{\circ}$; BEMKAG: $\mathrm{Ct}-\mathrm{Ct}=3.9 \AA, \perp=3.5 \AA, \beta=6^{\circ}, \mathrm{H}-\mathrm{Ct}=2.72 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=156^{\circ}$; CAXJIU: Ct$\mathrm{Ct}=3.7 \AA, \perp=3.7 \AA, \beta=6^{\circ}, \mathrm{H}-\mathrm{Ct}=2.76 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=145^{\circ} ; \mathrm{CEGTOY}: \mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.6 \AA, \beta=$ $20.8^{\circ}, \mathrm{H}-\mathrm{Ct}=2.93 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=165^{\circ}, \mathrm{H}-\mathrm{Ct}=2.55 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=169^{\circ} ; \mathrm{CEHMUX}: \mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.6$ $\AA, \beta=21.1^{\circ}, \mathrm{H}-\mathrm{Ct}=2.88 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=166^{\circ}$; FERZOS: $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.5 \AA, \beta=19.0^{\circ}, \mathrm{H}-\mathrm{Ct}=2.69$ $\AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=164^{\circ}$; QAGVEA: $\mathrm{Ct}-\mathrm{Ct}=3.56 \AA, \perp=3.4 \AA, \beta=18.5^{\circ}, \mathrm{H}-\mathrm{Ct}=2.75 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=141^{\circ}$; UDUQOZ: $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.5 \AA, \beta=22.6^{\circ}, \mathrm{H}-\mathrm{Ct}=2.66 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=175^{\circ}$.

Fig. S2. BEMJAF; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.4 \AA, \beta=28.8^{\circ}, \mathrm{H}-\mathrm{Cl}=2.91 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Cl}=144^{\circ}, \mathrm{H}-\mathrm{Cl}=2.73 \AA$, $\mathrm{C}-\mathrm{H}-\mathrm{Cl}=150^{\circ} ;$ INEZAC; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.6 \AA, \beta=19.6^{\circ}, \mathrm{H}-\mathrm{O}=2.6 \AA, \mathrm{C}-\mathrm{H}-\mathrm{O}=140^{\circ}, \mathrm{H}-\mathrm{O}=2.7$ $\AA, \mathrm{C}-\mathrm{H}-\mathrm{O}=146^{\circ} ;$ DEJJIM; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.4 \AA, \beta=23.9^{\circ} ;$ INEYIJ $; \mathrm{Ct}-\mathrm{Ct}=3.8 \AA, \perp=3.5 \AA, \beta=$ 24.5°; $\mathrm{KECDAX} ; \mathrm{Ct}-\mathrm{Ct}=3.4 \AA, \perp=3.3 \AA, \beta=15.3^{\circ}$.

Fig. S3. AKERIR; $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA, \perp=3.5 \AA, \beta=20.1^{\circ}, \mathrm{H}-\mathrm{Cl}=3.1 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Cl}=139^{\circ}, \mathrm{H}-\mathrm{Cl}=2.9 \AA, \mathrm{C}-$ $\mathrm{H}-\mathrm{Cl}=144^{\circ}$; BEFYAM; $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA, \perp=3.4 \AA, \beta=21.4^{\circ}, \mathrm{H}-\mathrm{O}=2.6 \AA, \mathrm{C}-\mathrm{H}-\mathrm{O}=143.8^{\circ}$; DEMMAK; $\mathrm{Ct}-\mathrm{Ct}=3.4 \AA, \perp=3.4 \AA, \beta=16^{\circ}, \mathrm{H}-\mathrm{Ct}=2.7 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=171^{\circ} ;$ DEXTEG; $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA$, $\perp=3.4 \AA, \beta=20.2^{\circ}, \mathrm{H}-\mathrm{Ct}=2.5 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Ct}=165^{\circ} ;$ XAKNAZ; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.4 \AA, \beta=23.1^{\circ}$

BEJMEI

PEFSEZ

TORYUU

YAWBOO

Fig. S4. BEJMEI; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA, \perp=3.5 \AA, \beta=21.7^{\circ}$, $\mathrm{H}-\mathrm{Cl}=2.89 \AA, \mathrm{C}-\mathrm{H}-\mathrm{Cl}=178^{\circ} ;$ PEFSEZ; $\mathrm{Ct}-\mathrm{Ct}=$ $3.5 \AA, \perp=3.4 \AA, \beta=15.4^{\circ} ;$ TORYUU; Ct-Ct $=3.6 \AA, \perp=3.5 \AA, \beta=12.7^{\circ} ;$ YAWBOO; $\mathrm{Ct}-\mathrm{Ct}=3.7 \AA$, $\perp=3.5 \AA, \beta=19.9^{\circ}$.

Fig. S5. AREDOQ; $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA, \perp=3.4 \AA, \beta=20.2^{\circ}$; DUZWAW; $\mathrm{Ct}-\mathrm{Ct}=4.5 \AA, \perp=3.5 \AA, \beta=39.5$ ${ }^{\text {o }}$; MERBUG; $\mathrm{Ct}-\mathrm{Ct}=3.6 \AA, \perp=3.3 \AA, \beta=22.7^{\circ}$; WAJCOA; no quinoline interaction observed; $\mathrm{Ct}-\mathrm{Pd}$ $=3.7 \AA, \perp \mathrm{Pd}$-Arene distance $=3.5 \AA$.

Fig. S6. Selected examples of quinoline based compounds with no $\pi-\pi$ stacking interactions: left, CSD refcode: GAKBEZ; middle, CSD refcode: GIQHEU; right, CSD refcode: HEMFAG.

Fig. S7. Statistical analysis of the Q_NM_Ph case: top-left: histogram for the C-H-Ct angle (${ }^{\circ}$); topright: histogram for the $\mathrm{H}-\mathrm{Ct}$ distance; bottom: scattergram for a correlation between the $\mathrm{C}-\mathrm{H}-\mathrm{Ct}$ angle and $\mathrm{H}-\mathrm{Ct}$ distance.

Fig. S8. Statistical analysis of the Q_NM_NM_Ph case: top-left: histogram for the C-H-Ct angle (${ }^{\circ}$); top-right: histogram for the H-Ct distance; bottom: scattergram for a correlation between the C-H-Ct angle and $\mathrm{H}-\mathrm{Ct}$ distance.

