Electronic Supplimentary Information

Metalla-macro-tricyclic Cryptands: Anion Encapsulation and Selective Separation of Sulfate via in situ Crystallization

N. N. Adarsh^a, Derek A. Tocher^b, Joan Ribas^c and Parthasarathi Dastidar^{*, a}

 ^aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
 ^bDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
 ^cDepartament de Química Inorgánica Universitat de Barcelona, Diagonal, 647, 08028-Barcelona, Spain.

E-mail: parthod123@rediffmail.com; ocpd@iacs.res.in

Molecular Plots and Hydrogen Bonding Parameters for 1a, 1b, 2, 3, 4a, 5 and 6

Molecular Plot of 1a

* 1-x, 2-y, 2-z

Hydrogen bonding parameters of 1a						
D–H•••A	D–H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet A (^0)$	Symmetry operation for A	
N(7)–H(7)•••O(53)	0.86	1.95	2.768(6)	157.6	x, y+1, z	
N(18)–H(18)•••O(51)	0.86	1.99	2.780(5)	153.1	x, y+1, z	
N(31)–H(31)•••O(52)	0.86	2.07	2.918(5)	170.7	x, y, z	
N(42)–H(42)•••O(52)	0.86	2.11	2.955(5)	165.8	x, y, z	
O(49)–H(49A)•••O(55)	0.801(11)	2.025(19)	2.025(19)	164(6)	-x+1, -y+1, -z+2	
O(50)–H(50B)•••O(9)	0.801(11)	1.976(15)	2.768(5)	170(5)	-x+1, -y+2, -z+1	
O(49)–H(49B)•••O(55)	0.798(11)	2.00(2)	2.765(6)	162(5)	x, y+1, z	
O(52)•••O(56)			2.656(6)		x, 1+y, z	
O(52)•••O(54)			2.732(6)		x, -1+y, z	
O(54)•••O(55)			2.781(6)		1-x, 2-y, 2-z	
O(17)•••O(54)			2.822(5)		x, y, z	

Molecular Plot of 1b

Hydrogen bonding parameters of 1b

D–H•••A	D-H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet \bullet A(^0)$	Symmetry
					operation for A
N(7)–H(7)•••O(35)	0.86	2.49	3.315(2)	161.4	x, y, z
N(18)–H(18)•••O(35)	0.86	2.25	3.095(2)	168.9	x, y, z
O(25)–H(25A)•••O(33)	0.81(3)	1.93(3)	2.723(2)	169(3)	-x, 1/2+y, 1/2-z
O(25)-H(25B)•••O(9)	0.80(3)	1.99(3)	2.783(2)	179(2)	-x, 1-y, 1-z
O(26)–H(26A)•••O(29)	0.78(3)	1.86(3)	2.626(2)	170(3)	-1+x, y, z
O(26)–H(26B)•••O(34)	0.70(3)	2.01(3)	2.701(2)	172(3)	x, y, z
O(27)–H(27A)•••O(25)	0.78(3)	2.27(3)	3.039(3)	171(3)	1+x, y, z
O(27)–H(27B)•••O(32)	0.80(3)	1.93(3)	2.726(2)	169(2)	x, y, z
O(28)–H(28A)•••O(34)	0.81(3)	1.90(3)	2.712(2)	176(3)	-x, 1/2+y, 1/2-z
O(28)–H(28B)•••O(31)	0.73(3)	1.95(3)	2.677(2)	175(3)	1-x, 1/2+y, 1/2-z
O(29)–H(29A)•••O(32)	0.81(3)	1.92(3)	2.722(2)	171(2)	x, y, z
O(29)–H(29B)•••O(30)	0.74(3)	2.04(3)	2.781(3)	174(3)	x, y, z
O(30)–H(30A)•••O(35)	0.83(3)	1.95(3)	2.770(3)	171(3)	1+x, y, z
O(30)–H(30B)•••O(31)	0.78(3)	2.04(3)	2.806(3)	170(3)	X, Y, Z
O(31)–H(31A)•••O(17)	0.74(3)	2.01(3)	2.743(2)	169(3)	1-x, -y, 1-z
O(31)–H(31B)•••O(33)	0.84(3)	1.83(3)	2.651(2)	168(3)	x, y, z

Molecular Plot of 2

* 1-x, 2-y, 2-z

Hydrogen bonding parameters of 2					
D-H•••A	D-H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet \bullet A(^0)$	Symmetry operation for A
N(7)-H(7) $\cdot\cdot\cdot$ F(6) N(7)-H(7) $\cdot\cdot\cdot$ F(1) N(18)-H(18) $\cdot\cdot\cdot$ F(5) N(31)-H(31) $\cdot\cdot\cdot$ O(51) N(42)-H(42) $\cdot\cdot\cdot$ O(51) O(49)-H(49A) $\cdot\cdot\cdot$ F(3) O(49)-H(49B) $\cdot\cdot\cdot$ F(2) O(50)-H(50A) $\cdot\cdot\cdot$ O(52A) O(50)-H(50B) $\cdot\cdot\cdot$ O(52A) O(51) $\cdot\cdot\cdot$ O(55A) O(51) $\cdot\cdot\cdot$ O(55B) O(56A) $\cdot\cdot\cdot$ O(54B) O(56A) $\cdot\cdot\cdot$ O(54C)	0.86 0.86 0.86 0.86 0.798(11) 0.797(11) 0.800(11) 0.798(11)	2.11 2.37 2.02 2.10 2.12 1.862(15) 1.99(3) 1.99(3) 1.983(17)	$\begin{array}{c} 2.903(7)\\ 3.104(7)\\ 2.831(7)\\ 2.961(8)\\ 2.969(8)\\ 2.656(7)\\ 2.739(7)\\ 2.754(11)\\ 2.775(7)\\ 2.687(14)\\ 2.576(15)\\ 2.624(18)\\ 2.82(2) \end{array}$	153.5 142.9 157.9 174.7 167.8 173(7) 155(7) 161(8) 171(8)	operation for A x, 1+y, z x, 1+y, z x, y, z x, y, z x, y, z 1-x, 1-y, 2-z x, y, z 1-x, 2-y, 1-z x, y, 1+z x, y, 1+z x, y, z x, y, z x, y, z
$O(53) \bullet \bullet O(54B)$ $O(51) \bullet \bullet F(3)$ $O(56A) \bullet \bullet F(1)$ $O(56B) \bullet \bullet F(1)$ $O(49) \bullet \bullet F(3)$ $O(55A) \bullet \bullet F(6)$ $O(55B) \bullet \bullet F(6)$			2.727(15) $2.783(7)$ $2.737(13)$ $2.651(17)$ $2.657(7)$ $2.616(13)$ $2.802(13)$		-x, 1-y, 1-z x, -1+y, z x, -1+y, z x, -1+y, z 1-x, 1-y, 2-z 1-x, 1-y, 1-z 1-x, 1-y, 1-z

Molecular Plot of 3

Hydrogen bonding parameters of 3

D–H•••A	D-H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet \bullet A (^0)$	Symmetry operation for A
$N(2)-H(1N)\cdots O(5)$	0.76(5)	2.36(5)	3.030(7)	148(5)	x, y, z
$O(2)-H(2O)\cdots O(4)$	0.88(8)	2.10(9)	2.978(8)	175(15)	x, y, z

Molecular plot of 4a

Hydrogen bonding parameters of 4a

D-H•••A	D-H (Å)	H•••A (Å)	D•••A (Å)	D−H•••A (⁰)	Symmetry operation for A
N(7)–H(7)•••O(29)	0.86	2.05	2.801(5)	145.3	x, y, z
N(18)-H(18)•••O(29)	0.86	2.07	2.870(5)	154.9	x, y, -1+z
O(17)•••O(31)			2.790(7)		1/2+x, 1/2-y, 1+z
O(25)•••O(31)			2.723(10)		-1/2+x, 1/2-y, z
O(31)•••O(17)			2.790(7)		-1/2+x, 1/2-y, -1+z
O(30)•••O(9)			2.704(7)		x, y, z
O(25)•••O(30)			2.691(8)		x, 1-y, z

X-ray Powder Diffraction (XRPD) - Simulated and Bulk solid comparison plot

Compound 2

Compound 4a

TGA of Compound 1a, 2 and 4a

Compound 1a

Figure S1

Unit cell contents = $4 \text{ Ligand} + 2 \text{ CuSO}_4 + 18 \text{ H}_2\text{O}$ [(4 solvated H₂O + 4 coordinated H₂O) + ~ 10 H₂O (97 electron SQEEZE result)]

Triclinic *P*-1 spacegroup, Z = 2

Therefore FW = Unit cell contents/Z = 2 Ligand + CuSO₄ + 9 H₂O [(2 solvated H₂O + 2 coordinated H₂O) + \sim 5 H₂O (48.5 electron SQEEZE result)]

Weight loss for 9 $H_2O = 9 \times 18/958 \times 100 = 17 \%$ (experimental 9.05 %)

Compound 2

Figure S2

Unit cell contents = $4 \text{ Ligand} + 2 \text{ CuSiF}_6 + 12 \text{ H}_2\text{O}$ [(8 solvated + 4 coordinated)] + 2 MeOH Triclinic *P-1* spacegroup, Z = 2

Therefore FW = Unitcell contents/Z

= 2 Ligand + CuSiF₆ + 6 H₂O+ 1 MeOH

= 982.4 g

Weight loss for $6 H_2O + 1 MeOH = 140.13/982.4 X 100$

= 14.26 % (experimental 15.6 %)

Compound 4a

Figure S3

Unit cell contents = 4 Ligand + 2 Cu(NO₃)₂+ 12 H₂O [(4 solvated H₂O + 2 coordinated H₂O) + ~ 6 H₂O (54 electron SQEEZE result)]

Monoclinic *Cm* spacegroup, Z = 2

Therefore FW = Unitcell contents/Z = 2 Ligand + Cu(NO₃)₂+ 6 H₂O [(2 solvated H₂O + 1 coordinated H₂O) + 3 H₂O (27 electron SQEEZE result)] = 932.3 g Weight loss for 6 H₂O = 6 X 18/932.3 X 100 = 11.6 % (experimental 7.5 %)

Anion binding property

Condition 1: To a 10 ml aqueous ethanolic solution of $CuSO_4.5H_2O$ (16 mg, 0.064 mmol), a methanolic solution of L1 (40mg, 0.126 mmol) was layered carefully and kept undisturbed. After three days, deep blue colored crystals, pale green colored crystals and pale blue colored precipitate were harvested separately. Both the crystals and the powder were washed with water and then with methanol and characterized by Elemental analysis, X-ray powder diffraction (XRPD) and FT-IR.

Yield: 20 mg, 15 % (deep blue colored crystals); 30 mg (pale blue powder)

Condition 2: To an aqueous ethanolic solution (10 ml) containing $CuSO_4.5H_2O$ (16 mg, 0.064 mmol), $NaClO_4$ (8mg, 0.064 mmol) and $NaNO_3$ (5.5 mg, 0.064 mmol), a methanolic solution of **L1** (40mg, 0.126 mml) was layered carefully and kept undisturbed. After three days, deep blue colored crystals and pale blue colored precipitate, thus obtained, were harvested separately and washed with water and then with methanol, and characterized by elemental analysis, X-ray powder diffraction (XRPD) and FT-IR.

Yield: 20 mg, 15 % (deep blue colored crystals); 30 mg (pale blue powder)

Condition 3: To an aqueous ethanolic solution (10 ml) containing $Cu(ClO_4)_2.6H_2O$ (23 mg, 0.064 mmol), Na_2SO_4 (9 mg, 0.064 mmol) and $NaNO_3$ (5.5 mg, 0.064 mmol), a methanolic solution of L1 (40 mg, 0.126 mmol) was layered carefully and kept undisturbed. After three days, deep blue colored crystals and pale blue colored precipitate were harvested separately, washed with water and then with methanol, and characterized by elemental analysis, X-ray powder diffraction (XRPD) and FT-IR.

Yield: 20 mg, 15 % (deep blue colored crystals); 30 mg (pale blue powder)

Condition 4: To an aqueous ethanolic solution (10 ml) containing $Cu(NO_3)_2.3H_2O$ (15 mg, 0.062 mmol), Na_2SO_4 (9 mg, 0.064 mmol) and $NaClO_4$ (8 mg, 0.064 mmol), a methanolic solution of L1 (40 mg, 0.126 mmol) was layered carefully and kept undisturbed. After three days, deep blue colored crystals and pale blue colored precipitate were harvested separately, washed with water and then with methanol and characterized by elemental analysis, X-ray powder diffraction (XRPD) and FT-IR.

Yield: 20 mg, 15 % (deep blue colored crystals); 30 mg (pale blue powder)

Various crystallization condition Compound 1a/1b crystallization (non competitive condition) Condition 1	Characteristic IR frequencies for Deep blue colored crystals (KBr pellet cm ⁻¹) 3248 (w, water v O-H), 3188 (m, amide v N-H), 3076 (m, aromatic v C-H), 1674 (s, amide v C=O), 1614 (s, amide δ N-H), 1101 (s, SO ₄ ²⁻ v _{asymm} S-O), 918 (w, SO ₄ ²⁻ v _{symm} S-O), 617 (m SO ₂ ⁻² δ S-O) cm ⁻¹	Characteristic IR frequencies for Pale blue colored powder (KBr pellet cm ⁻¹) 3390 (w, water v O-H), 3281 (m, amide v N-H), 3076 (m, aromatic v C-H), 1672 (s, amide v C=O), 1620 (s, amide v C=O), 1620 (s, amide v C=O), 1620 (s, amide v C=O), 1611 (sb, SO ₄ ⁻² v _{asymm} S-O), 964 (s, SO ₄ ⁻² v _{asymm} S-O), 615 (m SO ₄ ⁻² v _{asymm} S-O),	Charac Pale bl pellet c 3334 (s 3097 (s 2925 (s 1670 (s 1616 (s 1103 (s 962 (s, 619 (m
Condition 2	3250 (w, water v O-H), 3188 (m, amide v N-H), 3074 (m, aromatic v C-H), 1672 (s, amide v C=O), 1612 (s, amide δ N-H), 1103 (s, SO ₄ ² · v _{asymm} S-O), 920 (w, SO ₄ ² · v _{asymm} S-O), 617 (m, SO ₄ ² · δ O-S-O) cm ⁻¹	3398 (w, water v O-H), 3284 (m, amide v N-H), 3076 (m, aromatic v C-H), 1672 (s, amide v C=O), 1620 (s, amide v C=O), 1116 (s, $SO_4^{2-} v_{asymm}$ S-O), 964 (s, $SO_4^{2-} v_{symm}$ S-O), 617 (m, $SO_4^{2-} \delta$ O-S-O) cm ⁻¹	015 (11
Condition 3	3250 (w, water v O-H), 3188 (m, amide v N-H), 3074 (m, aromatic v C-H), 1676 (s, amide v C=O), 1614 (s, amide δ N-H), 1103 (s, SO ₄ ²⁻ v _{asymm} S-O), 918 (m, SO ₄ ²⁻ v _{symm} S-O) 617 (s, SO ₄ ²⁻ δ O-S-O) cm ⁻¹	3390 (w, water v O-H), 3284 (m, amide v N-H), 3076 (m, aromatic v C-H), 1672 (s, amide v C=O), 1620 (s, amide δ N-H), 1116 (s, SO ₄ ²⁻ v _{asymm} S-O), 964 (s, SO ₄ ²⁻ v _{symm} S-O), 615 (m, SO ₄ ²⁻ 0, S-C), cm ⁻¹	
Condition 4	3246 (w, water v O-H), 3198 (m, amide v N-H), 3072 (m, aromatic v C-H), 1676 (s, amide v C=O), 1614 (s, amide δ N-H), 1103 (s, SO ₄ ²⁻ v _{asymm} S-O), 918 (w, SO ₄ ²⁻ v _{symm} S-O), 617 (m, SO ₄ ²⁻ δ O-S-O) cm ⁻¹	3390 (w, water v O-H), 3288 (m, amide v N-H), 3086 (m, aromatic v C-H), 1678 (s, amide v C=O), 1618 (s, amide δ N-H), 1116 (s, SO ₄ ²⁻ v _{asymm} S-O), 964 (s, SO ₄ ²⁻ v _{symm} S-O), 617 (m, SO ₄ ²⁻ δ O-S-O) cm ⁻¹	

Characteristic IR frequencies for Pale blue colored crystals (KBr ellet cm⁻¹)

3334 (s, water O-H stretch), 3097 (s, amide N-H stretch), 2925 (s, aromatic C-H stretch), 1670 (s, amide C=O stretch), 1616 (s, amide N-H bend) 1103 (sb, $SO_4^{2-} v_{asymm}$ S-O), 362 (s, $SO_4^{2-} v_{symm}$ S-O), 519 (m, $SO_4^{2-} \delta$ O-S-O) cm⁻¹

 $g_{par} = 2.17$; $g_{perp} = 2.06$; $g_{average} = 2.10$

Figure S4